Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Convex Duality in Constrained Portfolio Optimization

Jakša Cvitanić and Ioannis Karatzas
The Annals of Applied Probability
Vol. 2, No. 4 (Nov., 1992), pp. 767-818
Stable URL: http://www.jstor.org/stable/2959666
Page Count: 52
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Convex Duality in Constrained Portfolio Optimization
Preview not available

Abstract

We study the stochastic control problem of maximizing expected utility from terminal wealth and/or consumption, when the portfolio is constrained to take values in a given closed, convex subset of Rd. The setting is that of a continuous-time, Itô process model for the underlying asset prices. General existence results are established for optimal portfolio/consumption strategies, by suitably embedding the constrained problem in an appropriate family of unconstrained ones, and finding a member of this family for which the corresponding optimal policy obeys the constraints. Equivalent conditions for optimality are obtained, and explicit solutions leading to feedback formulae are derived for special utility functions and for deterministic coefficients. Results on incomplete markets, on short-selling constraints and on different interest rates for borrowing and lending are covered as special cases. The mathematical tools are those of continuous-time martingales, convex analysis and duality theory.

Page Thumbnails

  • Thumbnail: Page 
767
    767
  • Thumbnail: Page 
768
    768
  • Thumbnail: Page 
769
    769
  • Thumbnail: Page 
770
    770
  • Thumbnail: Page 
771
    771
  • Thumbnail: Page 
772
    772
  • Thumbnail: Page 
773
    773
  • Thumbnail: Page 
774
    774
  • Thumbnail: Page 
775
    775
  • Thumbnail: Page 
776
    776
  • Thumbnail: Page 
777
    777
  • Thumbnail: Page 
778
    778
  • Thumbnail: Page 
779
    779
  • Thumbnail: Page 
780
    780
  • Thumbnail: Page 
781
    781
  • Thumbnail: Page 
782
    782
  • Thumbnail: Page 
783
    783
  • Thumbnail: Page 
784
    784
  • Thumbnail: Page 
785
    785
  • Thumbnail: Page 
786
    786
  • Thumbnail: Page 
787
    787
  • Thumbnail: Page 
788
    788
  • Thumbnail: Page 
789
    789
  • Thumbnail: Page 
790
    790
  • Thumbnail: Page 
791
    791
  • Thumbnail: Page 
792
    792
  • Thumbnail: Page 
793
    793
  • Thumbnail: Page 
794
    794
  • Thumbnail: Page 
795
    795
  • Thumbnail: Page 
796
    796
  • Thumbnail: Page 
797
    797
  • Thumbnail: Page 
798
    798
  • Thumbnail: Page 
799
    799
  • Thumbnail: Page 
800
    800
  • Thumbnail: Page 
801
    801
  • Thumbnail: Page 
802
    802
  • Thumbnail: Page 
803
    803
  • Thumbnail: Page 
804
    804
  • Thumbnail: Page 
805
    805
  • Thumbnail: Page 
806
    806
  • Thumbnail: Page 
807
    807
  • Thumbnail: Page 
808
    808
  • Thumbnail: Page 
809
    809
  • Thumbnail: Page 
810
    810
  • Thumbnail: Page 
811
    811
  • Thumbnail: Page 
812
    812
  • Thumbnail: Page 
813
    813
  • Thumbnail: Page 
814
    814
  • Thumbnail: Page 
815
    815
  • Thumbnail: Page 
816
    816
  • Thumbnail: Page 
817
    817
  • Thumbnail: Page 
818
    818