If you need an accessible version of this item please contact JSTOR User Support

Brownian Models of Feedforward Queueing Networks: Quasireversibility and Product Form Solutions

J. M. Harrison and R. J. Williams
The Annals of Applied Probability
Vol. 2, No. 2 (May, 1992), pp. 263-293
Stable URL: http://www.jstor.org/stable/2959751
Page Count: 31
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Brownian Models of Feedforward Queueing Networks: Quasireversibility and Product Form Solutions
Preview not available

Abstract

We consider a very general type of d-station open queueing network, with multiple customer classes and a more or less arbitrary service discipline at each station, but restricted by the requirement that customers always flow from lower numbered stations to higher numbered ones. To approximate the behavior of such a queueing network under heavy traffic conditions, a corresponding Brownian network model is proposed and it is shown that the approximating Brownian model reduces to a d-dimensional reflected Brownian motion W whose state space is the nonnegative orthant. A necessary and sufficient condition for W to have a product form stationary distribution (that is, a stationary distribution with independent components) and a probabilistic interpretation for that condition are given. Our interpretation involves a notion of quasireversibility analogous to that introduced by Kelly and elaborated by Walrand in their brilliant analysis of product form solutions for conventional queueing network models. Three illustrative queueing network models are discussed in detail and the analysis of these examples shows how a Brownian network approximation may have a product form stationary distribution even when the original or exact model is intractable. Particularly intriguing in that regard are two examples involving non-Poisson inputs, deterministic routing, deterministic service times and processor-sharing service disciplines.

Page Thumbnails

  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
266
    266
  • Thumbnail: Page 
267
    267
  • Thumbnail: Page 
268
    268
  • Thumbnail: Page 
269
    269
  • Thumbnail: Page 
270
    270
  • Thumbnail: Page 
271
    271
  • Thumbnail: Page 
272
    272
  • Thumbnail: Page 
273
    273
  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277
  • Thumbnail: Page 
278
    278
  • Thumbnail: Page 
279
    279
  • Thumbnail: Page 
280
    280
  • Thumbnail: Page 
281
    281
  • Thumbnail: Page 
282
    282
  • Thumbnail: Page 
283
    283
  • Thumbnail: Page 
284
    284
  • Thumbnail: Page 
285
    285
  • Thumbnail: Page 
286
    286
  • Thumbnail: Page 
287
    287
  • Thumbnail: Page 
288
    288
  • Thumbnail: Page 
289
    289
  • Thumbnail: Page 
290
    290
  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293