Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Natural variation of submergence tolerance among Arabidopsis thaliana accessions

D. Vashisht, A. Hesselink, R. Pierik, J. M. H. Ammerlaan, J. Bailey-Serres, E. J. W. Visser, O. Pedersen, M. van Zanten, D. Vreugdenhil, D. C. L. Jamar, L. A. C. J. Voesenek and R. Sasidharan
The New Phytologist
Vol. 190, No. 2 (April 2011), pp. 299-310
Published by: Wiley on behalf of the New Phytologist Trust
Stable URL: http://www.jstor.org/stable/29783439
Page Count: 12
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Preview not available
Preview not available

Abstract

The exploitation of natural variation in Arabidopsis thaliana (Arabidopsis) provides a huge potential for the identification of the molecular mechanisms underlying this variation as a result of the availability of a vast array of genetic and genomic resources for this species. Eighty-six Arabidopsis accessions were screened for natural variation in flooding tolerance. This forms the first step towards the identification and characterization of the role of candidate genes contributing to flooding tolerance. Arabidopsis accessions at the 10-leaf stage were subjected to complete submergence in the dark. Survival curves were plotted to estimate median lethal times as a measure of tolerance. Flooding-associated survival parameters, such as root and shoot oxygen content, initial carbohydrate content and petiole elongation under water, were also measured. There was a significant variation in submergence tolerance among Arabidopsis accessions. However, the order of tolerance did not correlate with root and shoot oxygen content or initial amounts of shoot starch and total soluble sugars. A negative correlation was observed between submergence tolerance and underwater petiole elongation. Arabidopsis accessions show considerable variation in the ability to tolerate complete submergence, making it a good species in which to identify and characterize genes and to study mechanisms that contribute to survival under water.

Page Thumbnails

  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302
  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305
  • Thumbnail: Page 
306
    306
  • Thumbnail: Page 
307
    307
  • Thumbnail: Page 
308
    308
  • Thumbnail: Page 
309
    309
  • Thumbnail: Page 
310
    310