Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Forecasting Inflation, Industrial Output and Exchange Rates: A Template Study for India

DIMITRIOS D. THOMAKOS and PRASAD S. BHATTACHARYA
Indian Economic Review
New Series, Vol. 40, No. 2 (July-December 2005), pp. 145-165
Stable URL: http://www.jstor.org/stable/29793841
Page Count: 21
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Forecasting Inflation, Industrial Output and Exchange Rates: A Template Study for India
Preview not available

Abstract

This paper reports results from a forecasting study for inflation, industrial output and exchange rates for India. We cannot reject the null hypothesis for linearity for all series used except for the growth rate of the foreign exchange series and our analysis is based on linear models, ARIMA and bivariate transfer functions and restricted VAR. Forecasting performance is evaluated using the models' root mean-squared error differences and Theil's inequality coefficients from recursive origin static, fixed origin dynamic and rolling origin dynamic forecasts. For models based on weekly data, based on RMSEs, we find that the bivariate models improve upon the forecasts of the ARIMA model while for models based on monthly data the ARIMA model has almost always better performance. In choosing between the two bivariate models on the basis of RMSEs, our overall results tend to support the use of a restricted VAR, as this model had the best forecasting performance more frequently than the transfer function model.

Page Thumbnails

  • Thumbnail: Page 
[145]
    [145]
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157
  • Thumbnail: Page 
158
    158
  • Thumbnail: Page 
159
    159
  • Thumbnail: Page 
160
    160
  • Thumbnail: Page 
161
    161
  • Thumbnail: Page 
162
    162
  • Thumbnail: Page 
163
    163
  • Thumbnail: Page 
164
    164
  • Thumbnail: Page 
165
    165