Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Age-Specific Incidence and Prevalence: A Statistical Perspective

Niels Keiding
Journal of the Royal Statistical Society. Series A (Statistics in Society)
Vol. 154, No. 3 (1991), pp. 371-412
Published by: Wiley for the Royal Statistical Society
DOI: 10.2307/2983150
Stable URL: http://www.jstor.org/stable/2983150
Page Count: 42
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Age-Specific Incidence and Prevalence: A Statistical Perspective
Preview not available

Abstract

In epidemiology incidence denotes the rate of occurrence of new cases (of disease), while prevalence is the frequency in the population (of diseased people). From a statistical point of view it is useful to understand incidence and prevalence in the parameter space, incidence as intensity (hazard) and prevalence as probability, and to relate observable quantities to these via a statistical model. In this paper such a framework is based on modelling each individual's dynamics in the Lexis diagram by a simple three-state stochastic process in the age direction and recruiting individuals from a Poisson process in the time direction. The resulting distributions in the cross-sectional population allow a rigorous discussion of the interplay between age-specific incidence and prevalence as well as of the statistical analysis of epidemiological cross-sectional data. For the latter, this paper focuses on methods from modern nonparametric continuous time survival analysis, including random censoring and truncation models and estimation under monotonicity constraints. The exposition is illustrated by examples, primarily from the author's epidemiological experience.

Page Thumbnails

  • Thumbnail: Page 
[371]
    [371]
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374
  • Thumbnail: Page 
375
    375
  • Thumbnail: Page 
376
    376
  • Thumbnail: Page 
377
    377
  • Thumbnail: Page 
378
    378
  • Thumbnail: Page 
379
    379
  • Thumbnail: Page 
380
    380
  • Thumbnail: Page 
381
    381
  • Thumbnail: Page 
382
    382
  • Thumbnail: Page 
383
    383
  • Thumbnail: Page 
384
    384
  • Thumbnail: Page 
385
    385
  • Thumbnail: Page 
386
    386
  • Thumbnail: Page 
387
    387
  • Thumbnail: Page 
388
    388
  • Thumbnail: Page 
389
    389
  • Thumbnail: Page 
390
    390
  • Thumbnail: Page 
391
    391
  • Thumbnail: Page 
392
    392
  • Thumbnail: Page 
393
    393
  • Thumbnail: Page 
394
    394
  • Thumbnail: Page 
395
    395
  • Thumbnail: Page 
396
    396
  • Thumbnail: Page 
397
    397
  • Thumbnail: Page 
398
    398
  • Thumbnail: Page 
399
    399
  • Thumbnail: Page 
400
    400
  • Thumbnail: Page 
401
    401
  • Thumbnail: Page 
402
    402
  • Thumbnail: Page 
403
    403
  • Thumbnail: Page 
404
    404
  • Thumbnail: Page 
405
    405
  • Thumbnail: Page 
406
    406
  • Thumbnail: Page 
407
    407
  • Thumbnail: Page 
408
    408
  • Thumbnail: Page 
409
    409
  • Thumbnail: Page 
410
    410
  • Thumbnail: Page 
411
    411
  • Thumbnail: Page 
412
    412