Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion

Clifford M. Hurvich, Jeffrey S. Simonoff and Chih-Ling Tsai
Journal of the Royal Statistical Society. Series B (Statistical Methodology)
Vol. 60, No. 2 (1998), pp. 271-293
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2985940
Page Count: 23
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion
Preview not available

Abstract

Many different methods have been proposed to construct nonparametric estimates of a smooth regression function, including local polynomial, (convolution) kernel and smoothing spline estimators. Each of these estimators uses a smoothing parameter to control the amount of smoothing performed on a given data set. In this paper an improved version of a criterion based on the Akaike information criterion (AIC), termed AICC, is derived and examined as a way to choose the smoothing parameter. Unlike plug-in methods, AICC can be used to choose smoothing parameters for any linear smoother, including local quadratic and smoothing spline estimators. The use of AICC avoids the large variability and tendency to undersmooth (compared with the actual minimizer of average squared error) seen when other `classical' approaches (such as generalized cross-validation or the AIC) are used to choose the smoothing parameter. Monte Carlo simulations demonstrate that the AICC-based smoothing parameter is competitive with a plug-in method (assuming that one exists) when the plug-in method works well but also performs well when the plug-in approach fails or is unavailable.

Page Thumbnails

  • Thumbnail: Page 
[271]
    [271]
  • Thumbnail: Page 
272
    272
  • Thumbnail: Page 
273
    273
  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277
  • Thumbnail: Page 
278
    278
  • Thumbnail: Page 
279
    279
  • Thumbnail: Page 
280
    280
  • Thumbnail: Page 
281
    281
  • Thumbnail: Page 
282
    282
  • Thumbnail: Page 
283
    283
  • Thumbnail: Page 
284
    284
  • Thumbnail: Page 
285
    285
  • Thumbnail: Page 
286
    286
  • Thumbnail: Page 
287
    287
  • Thumbnail: Page 
288
    288
  • Thumbnail: Page 
289
    289
  • Thumbnail: Page 
290
    290
  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293