Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Contaminant Detection in the Visual Inspection of Seed Samples

C. G. G. Aitken, J. Shaw and M. Talbot
Journal of the Royal Statistical Society. Series C (Applied Statistics)
Vol. 44, No. 4 (1995), pp. 431-440
Published by: Wiley for the Royal Statistical Society
DOI: 10.2307/2986136
Stable URL: http://www.jstor.org/stable/2986136
Page Count: 10
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Contaminant Detection in the Visual Inspection of Seed Samples
Preview not available

Abstract

The quality of a seed lot is determined, in part, by the amount of contaminants in a sample. One way of automating the process of identifying contaminants is to take shape and size measurements of each item in the sample. The process of detecting contaminants from such data may be viewed as a multivariate statistical outlier problem in which contaminants are considered as outliers in a sample of normal seeds. Pettit has developed Bayesian diagnostics for multivariate normal distributions with multivariate normal prior distributions; an extension is described here in which the prior distribution for the mean is other than normal and is represented by a kernel density estimate. The performances of the normal distribution and extended methods are compared in an application to the seed testing problem.

Page Thumbnails

  • Thumbnail: Page 
[431]
    [431]
  • Thumbnail: Page 
432
    432
  • Thumbnail: Page 
433
    433
  • Thumbnail: Page 
434
    434
  • Thumbnail: Page 
435
    435
  • Thumbnail: Page 
436
    436
  • Thumbnail: Page 
437
    437
  • Thumbnail: Page 
438
    438
  • Thumbnail: Page 
439
    439
  • Thumbnail: Page 
440
    440