Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Tropical Blackwater Rivers, Animals, and Mast Fruiting by the Dipterocarpaceae

Daniel H. Janzen
Biotropica
Vol. 6, No. 2 (Jul., 1974), pp. 69-103
DOI: 10.2307/2989823
Stable URL: http://www.jstor.org/stable/2989823
Page Count: 35
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Tropical Blackwater Rivers, Animals, and Mast Fruiting by the Dipterocarpaceae
Preview not available

Abstract

It is proposed that tropical nutrient-poor white sand soils produce blackwater rivers, rivers that are rich in humic acids and poor in nutrients, because the vegetation growing on these soils is exceptionally rich in secondary compounds. The humic acids (= tannins and other phenolics) may even be only the more conspicuous of the secondary compounds that leach out of the living vegetation and the litter. While the water and the soil (including litter) may be expected to have a low productivity and animal biomass solely on the basis of its low nutrient content, it is quite possible that large amounts of secondary compounds are also debilitating to the animal community. An exceptionally high concentration of secondary compounds is expected in the vegetation growing on white sand soils for two reasons. First, this is an expected outcome in habitats where the loss of a leaf to an herbivore or through deciduous behavior is relatively a much greater loss than on nutrient-rich soils. Second, the plants growing there belong for the most part to families exceptionally rich in secondary compounds, a characteristic which is in turn selected for by the chemical defense requirements of plants growing in low diversity stands. The small amount of data that is available from Sarawak white sand habitats shows that the carrying capacity for animals is very greatly reduced. The postulated cause is reduced primary productivity and/or much of the productivity being used by the plant for secondary compounds (unharvestable productivity), or stored for seed crops at very long intervals (unavailable productivity). It is proposed that mast fruiting at the community level, as displayed by trees in the Dipterocarpaceae, is a mechanism of escape from seed predators that is unique to this part of the tropics (S.E. Asia) because this area has reduced animal communities (both on white sand soil sites and in general), and because the climate is sufficiently uniform for such an intra- and inter-population cueing system to evolve. Without experimentation, it is impossible to know, however, if the animal community is reduced solely due to overall lowered primary and harvestable productivity, or as well to the inevitable reduction in animal numbers when many of the trees in a habitat wait more than a few years for their highly synchronized seed crops. The occurrence of numerous tropical habitats with a very low diversity of trees inviolates the currently popular dogma that diversity is mandatory for stability in tropical habitats. I propose that the trees in such monotonous habitats are exceptionally well-protected chemically with respect to foliage, and have either very toxic seeds or well-developed mast cycles.

Page Thumbnails

  • Thumbnail: Page 
69
    69
  • Thumbnail: Page 
70
    70
  • Thumbnail: Page 
71
    71
  • Thumbnail: Page 
72
    72
  • Thumbnail: Page 
73
    73
  • Thumbnail: Page 
74
    74
  • Thumbnail: Page 
75
    75
  • Thumbnail: Page 
76
    76
  • Thumbnail: Page 
77
    77
  • Thumbnail: Page 
78
    78
  • Thumbnail: Page 
79
    79
  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83
  • Thumbnail: Page 
84
    84
  • Thumbnail: Page 
85
    85
  • Thumbnail: Page 
86
    86
  • Thumbnail: Page 
87
    87
  • Thumbnail: Page 
88
    88
  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90
  • Thumbnail: Page 
91
    91
  • Thumbnail: Page 
92
    92
  • Thumbnail: Page 
93
    93
  • Thumbnail: Page 
94
    94
  • Thumbnail: Page 
95
    95
  • Thumbnail: Page 
96
    96
  • Thumbnail: Page 
97
    97
  • Thumbnail: Page 
98
    98
  • Thumbnail: Page 
99
    99
  • Thumbnail: Page 
100
    100
  • Thumbnail: Page 
101
    101
  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103