Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Effect of Leaf Rolling on Gas Exchange and Leaf Temperature of Andropogon gerardii and Spartina pectinata

Scott A. Heckathorn and Evan H. DeLucia
Botanical Gazette
Vol. 152, No. 3 (Sep., 1991), pp. 263-268
Stable URL: http://www.jstor.org/stable/2995209
Page Count: 6
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Effect of Leaf Rolling on Gas Exchange and Leaf Temperature of Andropogon gerardii and Spartina pectinata
Preview not available

Abstract

We examined the effect of leaf rolling on CO2 and water vapor exchange of two C4 prairie grasses with contrasting patterns of leaf rolling. Andropogon gerardii (big bluestem) is a drought-resistant species with predominantly hypostomatal leaves that fold (adaxial surface inward) in response to low leaf water potential, while leaves of Spartina pectinata (prairie cordgrass), a mesic species, are epistomatal and roll into spirals (also adaxial surface inward). Adaxial stomata of both species are closed in completely rolled or folded leaves; thus these leaf movements have a minor effect on total leaf conductance. Energy budget calculations indicate that leaf rolling reduces transpiration by 7%-13% in water-stressed plants by lowering leaf temperature and, therefore, leaf-to-air vapor pressure deficit. This reduction is small relative to the direct effect of stomatal closure on transpiration. However, small decreases in transpiration, leaf temperature, and incident irradiance associated with leaf rolling may decrease the potential for photoinhibition, prolong physiological activity, and increase survival during drought.

Page Thumbnails

  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
266
    266
  • Thumbnail: Page 
267
    267
  • Thumbnail: Page 
268
    268