If you need an accessible version of this item please contact JSTOR User Support

Degrees of Unsolvability of Continuous Functions

Joseph S. Miller
The Journal of Symbolic Logic
Vol. 69, No. 2 (Jun., 2004), pp. 555-584
Stable URL: http://www.jstor.org/stable/30041743
Page Count: 30
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Degrees of Unsolvability of Continuous Functions
Preview not available

Abstract

We show that the Turing degrees are not sufficient to measure the complexity of continuous functions on [0, 1]. Computability of continuous real functions is a standard notion from computable analysis. However, no satisfactory theory of degrees of continuous functions exists. We introduce the continuous degrees and prove that they are a proper extension of the Turing degrees and a proper substructure of the enumeration degrees. Call continuous degrees which are not Turing degrees non-total. Several fundamental results are proved: a continuous function with non-total degree has no least degree representation, settling a question asked by Pour-El and Lempp; every non-computable f $\epsilon \mathcal{C}[0, 1]$ computes a non-computable subset of $\mathbb{N}$; there is a non-total degree between Turing degrees $a _\eqslantless_{\tau}$ b iff b is a PA degree relative to a; $\mathcal{S} \subseteq 2^{\mathbb{N}}$ is a Scott set iff it is the collection of f-computable subsets of $\mathbb{N}$ for some f $\epsilon \mathcal{C}[O, 1]$ of non-total degree; and there are computably incomparable f, g $\epsilon \mathcal{C}[0, 1]$ which compute exactly the same subsets of $\mathbb{N}$. Proofs draw from classical analysis and constructive analysis as well as from computability theory.

Page Thumbnails

  • Thumbnail: Page 
555
    555
  • Thumbnail: Page 
556
    556
  • Thumbnail: Page 
557
    557
  • Thumbnail: Page 
558
    558
  • Thumbnail: Page 
559
    559
  • Thumbnail: Page 
560
    560
  • Thumbnail: Page 
561
    561
  • Thumbnail: Page 
562
    562
  • Thumbnail: Page 
563
    563
  • Thumbnail: Page 
564
    564
  • Thumbnail: Page 
565
    565
  • Thumbnail: Page 
566
    566
  • Thumbnail: Page 
567
    567
  • Thumbnail: Page 
568
    568
  • Thumbnail: Page 
569
    569
  • Thumbnail: Page 
570
    570
  • Thumbnail: Page 
571
    571
  • Thumbnail: Page 
572
    572
  • Thumbnail: Page 
573
    573
  • Thumbnail: Page 
574
    574
  • Thumbnail: Page 
575
    575
  • Thumbnail: Page 
576
    576
  • Thumbnail: Page 
577
    577
  • Thumbnail: Page 
578
    578
  • Thumbnail: Page 
579
    579
  • Thumbnail: Page 
580
    580
  • Thumbnail: Page 
581
    581
  • Thumbnail: Page 
582
    582
  • Thumbnail: Page 
583
    583
  • Thumbnail: Page 
584
    584