Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Cone Topography and Spectral Sensitivity in Two Potentially Trichromatic Marsupials, the Quokka (Setonix brachyurus) and Quenda (Isoodon obesulus)

Catherine A. Arrese, Alison Y. Oddy, Philip B. Runham, Nathan S. Hart, Julia Shand, David M. Hunt and Lyn D. Beazley
Proceedings: Biological Sciences
Vol. 272, No. 1565 (Apr. 22, 2005), pp. 791-796
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/30047603
Page Count: 6
Were these topics helpful?
See something inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Cone Topography and Spectral Sensitivity in Two Potentially Trichromatic Marsupials, the Quokka (Setonix brachyurus) and Quenda (Isoodon obesulus)
Preview not available

Abstract

The potential for trichromacy in mammals, thought to be unique to primates, was recently discovered in two Australian marsupials. Whether the presence of three cone types, sensitive to short- (SWS), medium- (MWS) and long- (LWS) wavelengths, occurs across all marsupials remains unknown. Here, we have investigated the presence, distribution and spectral sensitivity of cone types in two further species, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus). Immunohistochemistry revealed that SWS cones in the quokka are concentrated in dorso-temporal retina, while in the quenda, two peaks were identified in naso-ventral and dorso-temporal retina. In both species, MWS/LWS cone spatial distributions matched those of retinal ganglion cells. Microspectrophotometry (MSP) confirmed that MWS and LWS cones are spectrally distinct, with mean wavelengths of maximum absorbance at 502 and 538 nm in the quokka, and at 509 and 551 nm, in the quenda. Although small SWS cone outer segments precluded MSP measurements, molecular analysis identified substitutions at key sites, accounting for a spectral shift from ultraviolet in the quenda to violet in the quokka. The presence of three cone types, along with previous findings in the fat-tailed dunnart and honey possum, suggests that three spectrally distinct cone types are a feature spanning the marsupials.

Page Thumbnails

  • Thumbnail: Page 
791
    791
  • Thumbnail: Page 
792
    792
  • Thumbnail: Page 
793
    793
  • Thumbnail: Page 
794
    794
  • Thumbnail: Page 
795
    795
  • Thumbnail: Page 
796
    796