If you need an accessible version of this item please contact JSTOR User Support

Measuring Inconsistency

Kevin Knight
Journal of Philosophical Logic
Vol. 31, No. 1 (Feb., 2002), pp. 77-98
Published by: Springer
Stable URL: http://www.jstor.org/stable/30226747
Page Count: 22
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Measuring Inconsistency
Preview not available

Abstract

I provide a method of measuring the inconsistency of a set of sentences from 1-consistency, corresponding to complete consistency, to 0-consistency, corresponding to the explicit presence of a contradiction. Using this notion to analyze the lottery paradox, one can see that the set of sentences capturing the paradox has a high degree of consistency (assuming, of course, a sufficiently large lottery). The measure of consistency, however, is not limited to paradoxes. I also provide results for general sets of sentences.

Page Thumbnails

  • Thumbnail: Page 
[77]
    [77]
  • Thumbnail: Page 
78
    78
  • Thumbnail: Page 
79
    79
  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83
  • Thumbnail: Page 
84
    84
  • Thumbnail: Page 
85
    85
  • Thumbnail: Page 
86
    86
  • Thumbnail: Page 
87
    87
  • Thumbnail: Page 
88
    88
  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90
  • Thumbnail: Page 
91
    91
  • Thumbnail: Page 
92
    92
  • Thumbnail: Page 
93
    93
  • Thumbnail: Page 
94
    94
  • Thumbnail: Page 
95
    95
  • Thumbnail: Page 
96
    96
  • Thumbnail: Page 
97
    97
  • Thumbnail: Page 
98
    98