Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Toward a More Natural Expression of Quantum Logic with Boolean Fractions

Philip G. Calabrese
Journal of Philosophical Logic
Vol. 34, No. 4 (Aug., 2005), pp. 363-401
Published by: Springer
Stable URL: http://www.jstor.org/stable/30226842
Page Count: 39
  • Download ($43.95)
  • Cite this Item
Toward a More Natural Expression of Quantum Logic with Boolean Fractions
Preview not available

Abstract

This paper uses a non-distributive system of Boolean fractions (a|b), where a and b are 2-valued propositions or events, to express uncertain conditional propositions and conditional events. These Boolean fractions, 'a if b' or 'a given b', ordered pairs of events, which did not exist for the founders of quantum logic, can better represent uncertain conditional information just as integer fractions can better represent partial distances on a number line. Since the indeterminacy of some pairs of quantum events is due to the mutual inconsistency of their experimental conditions, this algebra of conditionals can express indeterminacy. In fact, this system is able to express the crucial quantum concepts of orthogonality, simultaneous verifiability, compatibility, and the superposition of quantum events, all without resorting to Hilbert space. A conditional (a|b) is said to be "inapplicable" (or "undefined") in those instances or models for which b is false. Otherwise the conditional takes the truth-value of proposition a. Thus the system is technically 3-valued, but the 3rd value has nothing to do with a state of ignorance, nor to some half-truth. People already routinely put statements into three categories: true, false, or inapplicable. As such, this system applies to macroscopic as well as microscopic events. Two conditional propositions turn out to be simultaneously verifiable just in case the truth of one implies the applicability of the other. Furthermore, two conditional propositions (a|b) and (c|d) reside in a common Boolean sub-algebra of the non-distributive system of conditional propositions just in case b = d, their conditions are equivalent. Since all aspects of quantum mechanics can be represented with this near classical logic, there is no need to adopt Hilbert space logic as ordinary logic, just a need perhaps to adopt propositional fractions to do logic, just as we long ago adopted integer fractions to do arithmetic. The algebra of Boolean fractions is a natural, near-Boolean extension of Boolean algebra adequate to express quantum logic. While this paper explains one group of quantum anomalies, it nevertheless leaves no less mysterious the 'influence-at-a-distance', quantum entanglement phenomena. A quantum realist must still embrace non-local influences to hold that "hidden variables" are the measured properties of particles. But that seems easier than imaging wave-particle duality and instant collapse, as offered by proponents of the standard interpretation of quantum mechanics.

Page Thumbnails

  • Thumbnail: Page 
[363]
    [363]
  • Thumbnail: Page 
364
    364
  • Thumbnail: Page 
365
    365
  • Thumbnail: Page 
366
    366
  • Thumbnail: Page 
367
    367
  • Thumbnail: Page 
368
    368
  • Thumbnail: Page 
369
    369
  • Thumbnail: Page 
370
    370
  • Thumbnail: Page 
371
    371
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374
  • Thumbnail: Page 
375
    375
  • Thumbnail: Page 
376
    376
  • Thumbnail: Page 
377
    377
  • Thumbnail: Page 
378
    378
  • Thumbnail: Page 
379
    379
  • Thumbnail: Page 
380
    380
  • Thumbnail: Page 
381
    381
  • Thumbnail: Page 
382
    382
  • Thumbnail: Page 
383
    383
  • Thumbnail: Page 
384
    384
  • Thumbnail: Page 
385
    385
  • Thumbnail: Page 
386
    386
  • Thumbnail: Page 
387
    387
  • Thumbnail: Page 
388
    388
  • Thumbnail: Page 
389
    389
  • Thumbnail: Page 
390
    390
  • Thumbnail: Page 
391
    391
  • Thumbnail: Page 
392
    392
  • Thumbnail: Page 
393
    393
  • Thumbnail: Page 
394
    394
  • Thumbnail: Page 
395
    395
  • Thumbnail: Page 
396
    396
  • Thumbnail: Page 
397
    397
  • Thumbnail: Page 
398
    398
  • Thumbnail: Page 
399
    399
  • Thumbnail: Page 
400
    400
  • Thumbnail: Page 
401
    401