Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Possible-Worlds Semantics for Modal Notions Conceived as Predicates

Volker Halbach, Hannes Leitgeb and Philip Welch
Journal of Philosophical Logic
Vol. 32, No. 2 (Apr., 2003), pp. 179-223
Published by: Springer
Stable URL: http://www.jstor.org/stable/30226940
Page Count: 45
  • Get Access
  • Download ($43.95)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Possible-Worlds Semantics for Modal Notions Conceived as Predicates
Preview not available

Abstract

If □ is conceived as an operator, i.e., an expression that gives applied to a formula another formula, the expressive power of the language is severely restricted when compared to a language where □ is conceived as a predicate, i.e., an expression that yields a formula if it is applied to a term. This consideration favours the predicate approach. The predicate view, however, is threatened mainly by two problems: Some obvious predicate systems are inconsistent, and possible-worlds semantics for predicates of sentences has not been developed very far. By introducing possible-worlds semantics for the language of arithmetic plus the unary predicate □, we tackle both problems. Given a frame (W, R) consisting of a set W of worlds and a binary relation R on W, we investigate whether we can interpret □ at every world in such a way that □$\ulcorner A \ulcorner$ holds at a world ᵆ ∊ W if and only if A holds at every world $\upsilon$ ∊ W such that ᵆR$\upsilon$. The arithmetical vocabulary is interpreted by the standard model at every world. Several 'paradoxes' (like Montague's Theorem, Gödel's Second Incompleteness Theorem, McGee's Theorem on the ω-inconsistency of certain truth theories, etc.) show that many frames, e.g., reflexive frames, do not allow for such an interpretation. We present sufficient and necessary conditions for the existence of a suitable interpretation of □ at any world. Sound and complete semi-formal systems, corresponding to the modal systems K and K4, for the class of all possible-worlds models for predicates and all transitive possible-worlds models are presented. We apply our account also to nonstandard models of arithmetic and other languages than the language of arithmetic.

Page Thumbnails

  • Thumbnail: Page 
[179]
    [179]
  • Thumbnail: Page 
180
    180
  • Thumbnail: Page 
181
    181
  • Thumbnail: Page 
182
    182
  • Thumbnail: Page 
183
    183
  • Thumbnail: Page 
184
    184
  • Thumbnail: Page 
185
    185
  • Thumbnail: Page 
186
    186
  • Thumbnail: Page 
187
    187
  • Thumbnail: Page 
188
    188
  • Thumbnail: Page 
189
    189
  • Thumbnail: Page 
190
    190
  • Thumbnail: Page 
191
    191
  • Thumbnail: Page 
192
    192
  • Thumbnail: Page 
193
    193
  • Thumbnail: Page 
194
    194
  • Thumbnail: Page 
195
    195
  • Thumbnail: Page 
196
    196
  • Thumbnail: Page 
197
    197
  • Thumbnail: Page 
198
    198
  • Thumbnail: Page 
199
    199
  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202
  • Thumbnail: Page 
203
    203
  • Thumbnail: Page 
204
    204
  • Thumbnail: Page 
205
    205
  • Thumbnail: Page 
206
    206
  • Thumbnail: Page 
207
    207
  • Thumbnail: Page 
208
    208
  • Thumbnail: Page 
209
    209
  • Thumbnail: Page 
210
    210
  • Thumbnail: Page 
211
    211
  • Thumbnail: Page 
212
    212
  • Thumbnail: Page 
213
    213
  • Thumbnail: Page 
214
    214
  • Thumbnail: Page 
215
    215
  • Thumbnail: Page 
216
    216
  • Thumbnail: Page 
217
    217
  • Thumbnail: Page 
218
    218
  • Thumbnail: Page 
219
    219
  • Thumbnail: Page 
220
    220
  • Thumbnail: Page 
221
    221
  • Thumbnail: Page 
222
    222
  • Thumbnail: Page 
223
    223