Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

On Asymptotically Optimal Tests under Loss of Identifiability in Semiparametric Models

Rui Song, Michael R. Kosorok and Jason P. Fine
The Annals of Statistics
Vol. 37, No. 5A (Oct., 2009), pp. 2409-2444
Stable URL: http://www.jstor.org/stable/30243710
Page Count: 36
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On Asymptotically Optimal Tests under Loss of Identifiability in Semiparametric Models
Preview not available

Abstract

We consider tests of hypotheses when the parameters are not identifiable under the null in semiparametric models, where regularity conditions for profile likelihood theory fail. Exponential average tests based on integrated profile likelihood are constructed and shown to be asymptotically optimal under a weighted average power criterion with respect to a prior on the nonidentifiable aspect of the model. These results extend existing results for parametric models, which involve more restrictive assumptions on the form of the alternative than do our results. Moreover, the proposed tests accommodate models with infinite dimensional nuisance parameters which either may not be identifiable or may not be estimable at the usual parametric rate. Examples include tests of the presence of a change-point in the Cox model with current status data and tests of regression parameters in odds-rate models with right censored data. Optimal tests have not previously been studied for these scenarios. We study the asymptotic distribution of the proposed tests under the null, fixed contiguous alternatives and random contiguous alternatives. We also propose a weighted bootstrap procedure for computing the critical values of the test statistics. The optimal tests perform well in simulation studies, where they may exhibit improved power over alternative tests.

Page Thumbnails

  • Thumbnail: Page 
2409
    2409
  • Thumbnail: Page 
2410
    2410
  • Thumbnail: Page 
2411
    2411
  • Thumbnail: Page 
2412
    2412
  • Thumbnail: Page 
2413
    2413
  • Thumbnail: Page 
2414
    2414
  • Thumbnail: Page 
2415
    2415
  • Thumbnail: Page 
2416
    2416
  • Thumbnail: Page 
2417
    2417
  • Thumbnail: Page 
2418
    2418
  • Thumbnail: Page 
2419
    2419
  • Thumbnail: Page 
2420
    2420
  • Thumbnail: Page 
2421
    2421
  • Thumbnail: Page 
2422
    2422
  • Thumbnail: Page 
2423
    2423
  • Thumbnail: Page 
2424
    2424
  • Thumbnail: Page 
2425
    2425
  • Thumbnail: Page 
2426
    2426
  • Thumbnail: Page 
2427
    2427
  • Thumbnail: Page 
2428
    2428
  • Thumbnail: Page 
2429
    2429
  • Thumbnail: Page 
2430
    2430
  • Thumbnail: Page 
2431
    2431
  • Thumbnail: Page 
2432
    2432
  • Thumbnail: Page 
2433
    2433
  • Thumbnail: Page 
2434
    2434
  • Thumbnail: Page 
2435
    2435
  • Thumbnail: Page 
2436
    2436
  • Thumbnail: Page 
2437
    2437
  • Thumbnail: Page 
2438
    2438
  • Thumbnail: Page 
2439
    2439
  • Thumbnail: Page 
2440
    2440
  • Thumbnail: Page 
2441
    2441
  • Thumbnail: Page 
2442
    2442
  • Thumbnail: Page 
2443
    2443
  • Thumbnail: Page 
2444
    2444