Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Genome Size Variation in Parrots: Longevity and Flying Ability

David Costantini, Luigi Racheli, Delia Cavallo and Giacomo Dell'Omo
Journal of Avian Biology
Vol. 39, No. 4 (Jul., 2008), pp. 453-459
Published by: Wiley on behalf of Nordic Society Oikos
Stable URL: http://www.jstor.org/stable/30244466
Page Count: 7
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Genome Size Variation in Parrots: Longevity and Flying Ability
Preview not available

Abstract

Several hypotheses have been proposed to explain genome size variation in birds. However, no general consensus has been reached thus far. In this study, we analysed the inter- and intraspecific variation of genome size in some parrot species, and we tested the hypotheses that (1) weaker fliers have larger genomes, and (2) long-living species have lower DNA content. In general, parrots have a mean genome size (2.93 pg/nucleus) comparable to that of other avian orders. Amazona ochrocephala tresmariae has the highest genome size (4.30 pg/nucleus) among parrots. As expected, weaker flyers have larger genomes than better ones. In contrast to our prediction, we found a positive correlation between genome size and longevity. Finally, the species-group Amazona has a higher DNA content than the two groups Ara and Cacatua. Since oxidative stress is causally related to longevity, we suggest that DNA oxidative damage could have acted to some extent as a constraint on GS variation in parrots and perhaps also in other avian orders.

Page Thumbnails

  • Thumbnail: Page 
453
    453
  • Thumbnail: Page 
454
    454
  • Thumbnail: Page 
455
    455
  • Thumbnail: Page 
456
    456
  • Thumbnail: Page 
457
    457
  • Thumbnail: Page 
458
    458
  • Thumbnail: Page 
459
    459