Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Hierarchical Functional Organization of Formal Biological Systems: A Dynamical Approach. I. The Increase of Complexity by Self-Association Increases the Domain of Stability of a Biological System

G. A. Chauvet
Philosophical Transactions: Biological Sciences
Vol. 339, No. 1290 (Mar. 29, 1993), pp. 425-444
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/3030182
Page Count: 20
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Hierarchical Functional Organization of Formal Biological Systems: A Dynamical Approach. I. The Increase of Complexity by Self-Association Increases the Domain of Stability of a Biological System
Preview not available

Abstract

In this series of papers, a theory of functional organization is proposed for biological systems (formal biological system, FBS), which is based on the concept of 'functional interaction', and on a 'functional self-association hypothesis'. From the specific properties of functional interactions, i.e. non-symmetry, non-locality, and non-instantaneity, it is shown that a biological system can be considered as constituted by two hierarchical systems: (i) the (O-FBS) that describes the topology of the FBS, i.e. the functional organization, with a hierarchical directed graph; (ii) the (D-FBS) that describes the continuous non-linear dynamics of the FBS with a field. In the framework of this theory, the problem of the relation between structure and function is considered to be due to the distinction between structural organization and functional organization. Some advantages of this approach are: (i) the description of the time evolution, during development, of the organization of an FBS with an optimum principle, which leads to a clear comparison with a physical system (paper II); (ii) the description of the space-time dynamics as the variation in space and time of field variables in a hierarchical 'space of structural units'; and, consequently, the relation between topology and geometry, and the existence of non-locality in these hierarchical spaces (paper III). In this paper, the basic concepts of functional interaction, hierarchical functional organization, and physiological function are discussed from a mathematical viewpoint, and arguments for the validity of the self-association hypothesis are given. Specifically, it is shown that, for a particular class of biological systems that are taken as an example, the domain of stability of the (D-FBS) is increased after functional association. This property, which is specifically due to the nature of the biological system, corresponds to an increase in complexity. It will be shown in the second paper that such a self-organization corresponds also to an optimal principle for the (O-FBS). The case of real biological systems (RBSS) is considered in relation with the present theory, which leads to a new hierarchical representation in terms of fields. Such representation could be a base for integrative physiology. As an example, some physiological functions, respiratory and cardio-vascular, are considered and it is shown that the heart shock emerges from the formulation as a cyclic sub-graph.

Page Thumbnails

  • Thumbnail: Page 
425
    425
  • Thumbnail: Page 
426
    426
  • Thumbnail: Page 
427
    427
  • Thumbnail: Page 
428
    428
  • Thumbnail: Page 
429
    429
  • Thumbnail: Page 
430
    430
  • Thumbnail: Page 
431
    431
  • Thumbnail: Page 
432
    432
  • Thumbnail: Page 
433
    433
  • Thumbnail: Page 
434
    434
  • Thumbnail: Page 
435
    435
  • Thumbnail: Page 
436
    436
  • Thumbnail: Page 
437
    437
  • Thumbnail: Page 
438
    438
  • Thumbnail: Page 
439
    439
  • Thumbnail: Page 
440
    440
  • Thumbnail: Page 
441
    441
  • Thumbnail: Page 
442
    442
  • Thumbnail: Page 
443
    443
  • Thumbnail: Page 
444
    444