Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Genetic Conflicts

Laurence D. Hurst, Anne Atlan and Bengt O. Bengtsson
The Quarterly Review of Biology
Vol. 71, No. 3 (Sep., 1996), pp. 317-364
Stable URL: http://www.jstor.org/stable/3035920
Page Count: 48
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Genetic Conflicts
Preview not available

Abstract

Self-promoting elements (also called ultraselfish genes, selfish genes, or selfish genetic elements) are vertically trasmitted genetic entities that manipulate their "host" so as to promote their own spread, usually at a cost to other genes within the genome. Examples of such elements include meiotic drive genes and cytoplasmic sexatio distorters. The spread of a self-promoting element creates the context for the spread of a suppressor acting whithin the same genome. We may thus say that a genetic conflict exists between different components of the same genome. Here we investigate the properties of such conflicts. First we consider the potential diversity of genomic conflicts and show that every genetic system has potential conflicts. This if followed by analysis of the logic of conflicts. Just as Evolutionarily Stable Strategy (ESS) terminology provides a short cut for discussion of much in behavioral ecology, so the language of modifier analysis provides a useful terminology on which to base discussions of conflicts. After defining genetic conflict, we provide a general analysis of the conflicting parties, and note a distinction between competing and conflicting genes. We then provide a taxonomy of possible short- and long-term outcomes of conflicts, noting that potential conflict is an unconstrained system can never be removed, and that the course of evolution owing to conflict is often unpredictable. The latter is most particularly true for strong conflicts in which suppressors may take suprising forms. The possibility of extended conflicts in the form of "arms races" between element and suppressor is illustrated. The peculiar redundancy of these systems is one possible trace of conflict, and others are discussed. That homologous conflicts may find highly different expression is discussed by referring to the mechanistic differences that are thought to underlie the action of the two best-described meiotic drive genes, and by the multiplicity of forms of cytoplasmic sex ratio distorters. The theoretical analysis establishes a logical basis for thinking about conflicts, but fails to establish the importance of conflict in evolution. We illustrate this contentious issue through consideration of some phenomena for whose evolution conflict has been proposed as an important force: the evolution of sex, sex determination, species, recombination, and uniparental inheritance of cytoplasmic genes. In general, it is proposed that conflict may be a central force in the evolution of genetic systems. We conclude that an analysis of conflict and its general importance in evolution is greatly aided by application of the concept of genetic power. We consider the posible components of genetic power and ask whether and how power evolves.

Page Thumbnails

  • Thumbnail: Page 
317
    317
  • Thumbnail: Page 
318
    318
  • Thumbnail: Page 
319
    319
  • Thumbnail: Page 
320
    320
  • Thumbnail: Page 
321
    321
  • Thumbnail: Page 
322
    322
  • Thumbnail: Page 
323
    323
  • Thumbnail: Page 
324
    324
  • Thumbnail: Page 
325
    325
  • Thumbnail: Page 
326
    326
  • Thumbnail: Page 
327
    327
  • Thumbnail: Page 
328
    328
  • Thumbnail: Page 
329
    329
  • Thumbnail: Page 
330
    330
  • Thumbnail: Page 
331
    331
  • Thumbnail: Page 
332
    332
  • Thumbnail: Page 
333
    333
  • Thumbnail: Page 
334
    334
  • Thumbnail: Page 
335
    335
  • Thumbnail: Page 
336
    336
  • Thumbnail: Page 
337
    337
  • Thumbnail: Page 
338
    338
  • Thumbnail: Page 
339
    339
  • Thumbnail: Page 
340
    340
  • Thumbnail: Page 
341
    341
  • Thumbnail: Page 
342
    342
  • Thumbnail: Page 
343
    343
  • Thumbnail: Page 
344
    344
  • Thumbnail: Page 
345
    345
  • Thumbnail: Page 
346
    346
  • Thumbnail: Page 
347
    347
  • Thumbnail: Page 
348
    348
  • Thumbnail: Page 
349
    349
  • Thumbnail: Page 
350
    350
  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355
  • Thumbnail: Page 
356
    356
  • Thumbnail: Page 
357
    357
  • Thumbnail: Page 
358
    358
  • Thumbnail: Page 
359
    359
  • Thumbnail: Page 
360
    360
  • Thumbnail: Page 
361
    361
  • Thumbnail: Page 
362
    362
  • Thumbnail: Page 
363
    363
  • Thumbnail: Page 
364
    364