Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Functional Requirement of Aquaporin-5 in Plasma Membranes of Sweat Glands

Lene N. Nejsum, Tae-Hwan Kwon, Uffe B. Jensen, Ornella Fumagalli, Jørgen Frøkiaer, Carissa M. Krane, Anil G. Menon, Landon S. King, Peter C. Agre and Søren Nielsen
Proceedings of the National Academy of Sciences of the United States of America
Vol. 99, No. 1 (Jan. 8, 2002), pp. 511-516
Stable URL: http://www.jstor.org/stable/3057568
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Functional Requirement of Aquaporin-5 in Plasma Membranes of Sweat
              Glands
Preview not available

Abstract

The distribution and function of aquaporins (AQPs) have not previously been defined in sweat glands. In this study, AQP1, AQP3, and AQP5 mRNA were demonstrated in rat paw by reverse transcription (RT)-PCR, but AQP2 and AQP4 were not. AQP1, AQP3, and AQP5 protein were confirmed in these tissues by immunoblotting. AQP1 was identified in capillary endothelial cells by immunohistochemical labeling, but not in sweat glands or epidermis. Abundant AQP3 expression was seen in basal levels of epidermis, but not in sweat glands. AQP2 and AQP4 were not observed in either skin or sweat glands. Immunohistochemical labeling revealed abundant AQP5 in secretory parts of rat and mouse sweat glands, where immunoelectron microscopy demonstrated abundant AQP5 labeling in the apical plasma membrane. AQP5 immunolabeling of human sweat glands yielded a similar pattern. To establish the role of AQP5 in sweat secretion, we tested the response of adult mice to s.c. injection of pilocarpine, as visualized by reaction of secreted amylase with iodine/starch. The number of active sweat glands was dramatically reduced in AQP5-null (-/-) mice compared with heterozygous (+/-) and wild-type (+/+) mice. We conclude that the presence of AQP5 in plasma membranes of sweat glands is essential for secretion, providing potential insight into mechanisms underlying mammalian thermo-regulation, tactile sensitivity, and the pathophysiology of hyperhidrosis.

Page Thumbnails

  • Thumbnail: Page 
511
    511
  • Thumbnail: Page 
512
    512
  • Thumbnail: Page 
513
    513
  • Thumbnail: Page 
514
    514
  • Thumbnail: Page 
515
    515
  • Thumbnail: Page 
516
    516