Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Understory Vascular Plant Species Diversity in the Mixedwood Boreal Forest of Western Canada

S. J. Chipman and E. A. Johnson
Ecological Applications
Vol. 12, No. 2 (Apr., 2002), pp. 588-601
Published by: Wiley
DOI: 10.2307/3060965
Stable URL: http://www.jstor.org/stable/3060965
Page Count: 14
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Understory Vascular Plant Species Diversity in the Mixedwood Boreal Forest of Western Canada
Preview not available

Abstract

One of the goals of ecosystem management has been to maintain plant species diversity. Emulating the "natural" (pre-European) fire regime is often proposed as a means of accomplishing this goal in fire-influenced boreal forest ecosystems. Here we examine this hypothesis as it applies to upland vascular plant species in the mixedwood boreal forest of Saskatchewan, Canada. Results from standardized multiple regressions indicate that neither time-since-fire nor canopy coverage (light availability) is the most important in accounting for species richness, evenness, and diversity. Instead, the most important factors are hillslope position and surficial geology (i.e., the moisture and nutrient gradients), and of secondary importance is the interaction between time-since-fire and canopy coverage (light availability). Diversity and species richness increase downslope as the moisture and nutrients increase. Glacial till hillslopes have higher richness than glaciofluvial hillslopes. The upper parts of hillslopes have lower richness, wider species tolerances, and lower overlap of species frequencies. Lower parts of hillslopes have higher richness, narrower species tolerance, and more overlap of species frequencies. Of secondary importance in influencing hillslope diversity is the interaction between time-since-fire and canopy coverage. Younger forests with lower canopy coverage have higher diversity, and older forests with more complete canopy coverage have lower diversity. Thus, upland species diversity in this fire-dominated ecosystem is determined by the system of hillslope and surficial geology and the interaction between time-since-fire and canopy coverage. Finally, species richness can be predicted using hillslope position, time -since-fire, and canopy coverage, respectively, from a Digital Elevation Model (DEM), a time-since-fire map, and a LANDSAT TM image.

Page Thumbnails

  • Thumbnail: Page 
588
    588
  • Thumbnail: Page 
589
    589
  • Thumbnail: Page 
590
    590
  • Thumbnail: Page 
591
    591
  • Thumbnail: Page 
592
    592
  • Thumbnail: Page 
593
    593
  • Thumbnail: Page 
594
    594
  • Thumbnail: Page 
595
    595
  • Thumbnail: Page 
596
    596
  • Thumbnail: Page 
597
    597
  • Thumbnail: Page 
598
    598
  • Thumbnail: Page 
599
    599
  • Thumbnail: Page 
600
    600
  • Thumbnail: Page 
601
    601