Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Water in a Changing World

Robert B. Jackson, Stephen R. Carpenter, Clifford N. Dahm, Diane M. McKnight, Robert J. Naiman, Sandra L. Postel and Steven W. Running
Ecological Applications
Vol. 11, No. 4 (Aug., 2001), pp. 1027-1045
Published by: Wiley
DOI: 10.2307/3061010
Stable URL: http://www.jstor.org/stable/3061010
Page Count: 19
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Water in a Changing World
Preview not available

Abstract

Renewable fresh water comprises a tiny fraction of the global water pool but is the foundation for life in terrestrial and freshwater ecosystems. The benefits to humans of renewable fresh water include water for drinking, irrigation, and industrial uses, for production of fish and waterfowl, and for such instream uses as recreation, transportation, and waste disposal. In the coming century, climate change and a growing imbalance among freshwater supply, consumption, and population will alter the water cycle dramatically. Many regions of the world are already limited by the amount and quality of available water. In the next 30 yr alone, accessible runoff is unlikely to increase more than 10%, but the earth's population is projected to rise by approximately one-third. Unless the efficiency of water use rises, this imbalance will reduce freshwater ecosystem services, increase the number of aquatic species facing extinction, and further fragment wetlands, rivers, deltas, and estuaries. Based on the scientific evidence currently available, we conclude that: (1) over half of accessible freshwater runoff globally is already appropriated for human use; (2) more than 1 x 109 people currently lack access to clean drinking water and almost 3 x 109 people lack basic sanitation services; (3) because the human population will grow faster than increases in the amount of accessible fresh water, per capita availability of fresh water will decrease in the coming century; (4) climate change will cause a general intensification of the earth's hydrological cycle in the next 100 yr, with generally increased precipitation, evapotranspiration, and occurrence of storms, and significant changes in biogeochemical processes influencing water quality; (5) at least 90% of total water discharge from U.S. rivers is strongly affected by channel fragmentation from dams, reservoirs, interbasin diversions, and irrigation; and (6) globally, 20% of freshwater fish species are threatened or extinct, and freshwater species make up 47% of all animals federally endangered in the United States. The growing demands on freshwater resources create an urgent need to link research with improved water management. Better monitoring, assessment, and forecasting of water resources will help to allocate water more efficiently among competing needs. Currently in the United States, at least six federal departments and 20 agencies share responsibilities for various aspects of the hydrologic cycle. Coordination by a single panel with members drawn from each department, or by a central agency, would acknowledge the diverse pressures on freshwater systems and could lead to the development of a well-coordinated national plan.

Page Thumbnails

  • Thumbnail: Page 
1027
    1027
  • Thumbnail: Page 
1028
    1028
  • Thumbnail: Page 
1029
    1029
  • Thumbnail: Page 
1030
    1030
  • Thumbnail: Page 
1031
    1031
  • Thumbnail: Page 
1032
    1032
  • Thumbnail: Page 
1033
    1033
  • Thumbnail: Page 
1034
    1034
  • Thumbnail: Page 
1035
    1035
  • Thumbnail: Page 
1036
    1036
  • Thumbnail: Page 
1037
    1037
  • Thumbnail: Page 
1038
    1038
  • Thumbnail: Page 
1039
    1039
  • Thumbnail: Page 
1040
    1040
  • Thumbnail: Page 
1041
    1041
  • Thumbnail: Page 
1042
    1042
  • Thumbnail: Page 
1043
    1043
  • Thumbnail: Page 
1044
    1044
  • Thumbnail: Page 
1045
    1045