Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Stability of Blow-Up Profile and Lower Bounds for Blow-Up Rate for the Critical Generalized KdV Equation

Yvan Martel and Frank Merle
Annals of Mathematics
Second Series, Vol. 155, No. 1 (Jan., 2002), pp. 235-280
Published by: Annals of Mathematics
DOI: 10.2307/3062156
Stable URL: http://www.jstor.org/stable/3062156
Page Count: 46
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Stability of Blow-Up Profile and Lower Bounds for Blow-Up Rate for the Critical Generalized KdV Equation
Preview not available

Abstract

The generalized Korteweg-de Vries equations are a class of Hamiltonian systems in infinite dimension derived from the KdV equation where the quadratic term is replaced by a higher order power term. These equations have two conservation laws in the energy space H1 (L2 norm and energy). We consider in this paper the critical generalized KdV equation, which corresponds to the smallest power of the nonlinearity such that the two conservation laws do not imply a bound in H1 uniform in time for all H1 solutions (and thus global existence). From [15], there do exist for this equation solutions u(t) such that |u(t)|H1 → +∞ as t ↑ T, where T ≤ +∞ (we call them blow-up solutions). The question is to describe, in a qualitative way, how blow up occurs. For solutions with L2 mass close to the minimal mass allowing blow up and with decay in L2 at the right, we prove after rescaling and translation which leave invariant the L2 norm that the solution converges to a universal profile locally in space at the blow-up time T. From the nature of this profile, we improve the standard lower bound on the blow-up rate for finite time blow-up solutions.

Page Thumbnails

  • Thumbnail: Page 
[235]
    [235]
  • Thumbnail: Page 
236
    236
  • Thumbnail: Page 
237
    237
  • Thumbnail: Page 
238
    238
  • Thumbnail: Page 
239
    239
  • Thumbnail: Page 
240
    240
  • Thumbnail: Page 
241
    241
  • Thumbnail: Page 
242
    242
  • Thumbnail: Page 
243
    243
  • Thumbnail: Page 
244
    244
  • Thumbnail: Page 
245
    245
  • Thumbnail: Page 
246
    246
  • Thumbnail: Page 
247
    247
  • Thumbnail: Page 
248
    248
  • Thumbnail: Page 
249
    249
  • Thumbnail: Page 
250
    250
  • Thumbnail: Page 
251
    251
  • Thumbnail: Page 
252
    252
  • Thumbnail: Page 
253
    253
  • Thumbnail: Page 
254
    254
  • Thumbnail: Page 
255
    255
  • Thumbnail: Page 
256
    256
  • Thumbnail: Page 
257
    257
  • Thumbnail: Page 
258
    258
  • Thumbnail: Page 
259
    259
  • Thumbnail: Page 
260
    260
  • Thumbnail: Page 
261
    261
  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
266
    266
  • Thumbnail: Page 
267
    267
  • Thumbnail: Page 
268
    268
  • Thumbnail: Page 
269
    269
  • Thumbnail: Page 
270
    270
  • Thumbnail: Page 
271
    271
  • Thumbnail: Page 
272
    272
  • Thumbnail: Page 
273
    273
  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277
  • Thumbnail: Page 
278
    278
  • Thumbnail: Page 
279
    279
  • Thumbnail: Page 
280
    280