Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Origins of Anteroposterior Patterning and Hox Gene Regulation during Chordate Evolution

Thomas F. Schilling and Robert D. Knight
Philosophical Transactions: Biological Sciences
Vol. 356, No. 1414 (Oct. 29, 2001), pp. 1599-1613
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/3066681
Page Count: 15
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Origins of Anteroposterior Patterning and Hox Gene Regulation during Chordate Evolution
Preview not available

Abstract

All chordates share a basic body plan and many common features of early development. Anteroposterior (AP) regions of the vertebrate neural tube are specified by a combinatorial pattern of Hox gene expression that is conserved in urochordates and cephalochordates. Another primitive feature of Hox gene regulation in all chordates is a sensitivity to retinoic acid during embryogenesis, and recent developmental genetic studies have demonstrated the essential role for retinoid signalling in vertebrates. Two AP regions develop within the chordate neural tube during gastrulation: an anterior 'forebrain-midbrain' region specified by Otx genes and a posterior 'hindbrain-spinal cord' region specified by Hox genes. A third, intermediate region corresponding to the midbrain or midbrain-hindbrain boundary develops at around the same time in vertebrates, and comparative data suggest that this was also present in the chordate ancestor. Within the anterior part of the Hox-expressing domain, however, vertebrates appear to have evolved unique roles for segmentation genes, such as Krox-20, in patterning the hindbrain. Genetic approaches in mammals and zebrafish, coupled with molecular phylogenetic studies in ascidians, amphioxus and lampreys, promise to reveal how the complex mechanisms that specify the vertebrate body plan may have arisen from a relatively simple set of ancestral developmental components.

Page Thumbnails

  • Thumbnail: Page 
1599
    1599
  • Thumbnail: Page 
1600
    1600
  • Thumbnail: Page 
1601
    1601
  • Thumbnail: Page 
1602
    1602
  • Thumbnail: Page 
1603
    1603
  • Thumbnail: Page 
1604
    1604
  • Thumbnail: Page 
1605
    1605
  • Thumbnail: Page 
1606
    1606
  • Thumbnail: Page 
1607
    1607
  • Thumbnail: Page 
1608
    1608
  • Thumbnail: Page 
1609
    1609
  • Thumbnail: Page 
1610
    1610
  • Thumbnail: Page 
1611
    1611
  • Thumbnail: Page 
1612
    1612
  • Thumbnail: Page 
1613
    1613