Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Local Adaptation across a Climatic Gradient despite Small Effective Population Size in the Rare Sapphire Rockcress

John K. McKay, John G. Bishop, Jing-Zhong Lin, James H. Richards, Anna Sala and Thomas Mitchell-Olds
Proceedings: Biological Sciences
Vol. 268, No. 1477 (Aug. 22, 2001), pp. 1715-1721
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/3068103
Page Count: 7
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Local Adaptation across a Climatic Gradient despite Small Effective Population Size in the Rare Sapphire Rockcress
Preview not available

Abstract

When assigning conservation priorities in endangered species, two common management strategies seek to protect remnant populations that (i) are the most genetically divergent or (ii) possess the highest diversity at neutral genetic markers. These two approaches assume that variation in molecular markers reflects variation in ecologically important traits and ignore the possibility of local adaptation among populations that show little divergence or variation at marker loci. Using common garden experiments, we demonstrate that populations of the rare endemic plant Arabis fecunda are physiologically adapted to the local microclimate. Local adaptation occurs despite (i) the absence of divergence at almost all marker loci and (ii) very small effective population sizes, as evidenced by extremely low levels of allozyme and DNA sequence polymorphism. Our results provide empirical evidence that setting conservation priorities based exclusively on molecular marker diversity may lead to the loss of locally adapted populations.

Page Thumbnails

  • Thumbnail: Page 
1715
    1715
  • Thumbnail: Page 
1716
    1716
  • Thumbnail: Page 
1717
    1717
  • Thumbnail: Page 
1718
    1718
  • Thumbnail: Page 
1719
    1719
  • Thumbnail: Page 
1720
    1720
  • Thumbnail: Page 
1721
    1721