Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Tests against Qualitative Interaction: Exact Critical Values and Robust Tests

Mervyn J. Silvapulle
Biometrics
Vol. 57, No. 4 (Dec., 2001), pp. 1157-1165
Stable URL: http://www.jstor.org/stable/3068248
Page Count: 9
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Tests against Qualitative Interaction: Exact Critical Values and Robust Tests
Preview not available

Abstract

Consider a study to evaluate treatment A with a placebo in two or more groups of patients. If treatment A is beneficial to one group of patients and harmful to another, then we say that there is qualitative interaction or crossover interaction between patient groups and the treatments. Gail and Simon (1985, Biometrics 41, 361-372) developed a large-sample procedure for this testing problem. Their test has received favorable coverage in the literature. In this article, we obtain corresponding exact finite sample results for normal error distribution and provide a table of critical values. The test statistic is similar to the familiar F-ratio, and its p-value is equal to a weighted sum of tail areas of F-distributions. The computations to implement this are simple. A simulation study shows that the exact critical values provided here for normal error distribution are preferable to the asymptotic critical values for a wide range of error distributions. We also develop tests that are power robust against long-tailed error distributions. Our robust test uses M-estimators instead of the least squares estimators. We show that the efficiency robustness of the M-estimator translates to power robustness of the corresponding test. Therefore, our robust tests are better if outliers are expected. A simulation study illustrates the substantial power advantages of our robust tests.

Page Thumbnails

  • Thumbnail: Page 
1157
    1157
  • Thumbnail: Page 
1158
    1158
  • Thumbnail: Page 
1159
    1159
  • Thumbnail: Page 
1160
    1160
  • Thumbnail: Page 
1161
    1161
  • Thumbnail: Page 
1162
    1162
  • Thumbnail: Page 
1163
    1163
  • Thumbnail: Page 
1164
    1164
  • Thumbnail: Page 
1165
    1165