Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Responses of Coastal Wetlands to Rising Sea Level

James T. Morris, P. V. Sundareshwar, Christopher T. Nietch, Björn Kjerfve and D. R. Cahoon
Ecology
Vol. 83, No. 10 (Oct., 2002), pp. 2869-2877
Published by: Wiley
DOI: 10.2307/3072022
Stable URL: http://www.jstor.org/stable/3072022
Page Count: 9
  • Download ($42.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Responses of Coastal Wetlands to Rising Sea Level
Preview not available

Abstract

Salt marsh ecosystems are maintained by the dominant macrophytes that regulate the elevation of their habitat within a narrow portion of the intertidal zone by accumulating organic matter and trapping inorganic sediment. The long-term stability of these ecosystems is explained by interactions among sea level, land elevation, primary production, and sediment accretion that regulate the elevation of the sediment surface toward an equilibrium with mean sea level. We show here in a salt marsh that this equilibrium is adjusted upward by increased production of the salt marsh macrophyte Spartina alterniflora and downward by an increasing rate of relative sea-level rise (RSLR). Adjustments in marsh surface elevation are slow in comparison to interannual anomalies and long-period cycles of sea level, and this lag in sediment elevation results in significant variation in annual primary productivity. We describe a theoretical model that predicts that the system will be stable against changes in relative mean sea level when surface elevation is greater than what is optimal for primary production. When surface elevation is less than optimal, the system will be unstable. The model predicts that there is an optimal rate of RSLR at which the equilibrium elevation and depth of tidal flooding will be optimal for plant growth. However, the optimal rate of RSLR also represents an upper limit because at higher rates of RSLR the plant community cannot sustain an elevation that is within its range of tolerance. For estuaries with high sediment loading, such as those on the southeast coast of the United States, the limiting rate of RSLR was predicted to be at most 1.2 cm/yr, which is 3.5 times greater than the current, long-term rate of RSLR.

Page Thumbnails

  • Thumbnail: Page 
2869
    2869
  • Thumbnail: Page 
2870
    2870
  • Thumbnail: Page 
2871
    2871
  • Thumbnail: Page 
2872
    2872
  • Thumbnail: Page 
2873
    2873
  • Thumbnail: Page 
2874
    2874
  • Thumbnail: Page 
2875
    2875
  • Thumbnail: Page 
2876
    2876
  • Thumbnail: Page 
2877
    2877