If you need an accessible version of this item please contact JSTOR User Support

Functional Calculus in Hölder-Zygmund Spaces

G. Bourdaud and Massimo Lanza de Cristoforis
Transactions of the American Mathematical Society
Vol. 354, No. 10 (Oct., 2002), pp. 4109-4129
Stable URL: http://www.jstor.org/stable/3072998
Page Count: 21
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Functional Calculus in Hölder-Zygmund Spaces
Preview not available

Abstract

In this paper we characterize those functions f of the real line to itself such that the nonlinear superposition operator Tf defined by Tf[g] := fog maps the Hölder-Zygmund space Cs( Rn) to itself, is continuous, and is r times continuously differentiable. Our characterizations cover all cases in which s is real and s > 0, and seem to be novel when s > 0 is an integer.

Page Thumbnails

  • Thumbnail: Page 
4109
    4109
  • Thumbnail: Page 
4110
    4110
  • Thumbnail: Page 
4111
    4111
  • Thumbnail: Page 
4112
    4112
  • Thumbnail: Page 
4113
    4113
  • Thumbnail: Page 
4114
    4114
  • Thumbnail: Page 
4115
    4115
  • Thumbnail: Page 
4116
    4116
  • Thumbnail: Page 
4117
    4117
  • Thumbnail: Page 
4118
    4118
  • Thumbnail: Page 
4119
    4119
  • Thumbnail: Page 
4120
    4120
  • Thumbnail: Page 
4121
    4121
  • Thumbnail: Page 
4122
    4122
  • Thumbnail: Page 
4123
    4123
  • Thumbnail: Page 
4124
    4124
  • Thumbnail: Page 
4125
    4125
  • Thumbnail: Page 
4126
    4126
  • Thumbnail: Page 
4127
    4127
  • Thumbnail: Page 
4128
    4128
  • Thumbnail: Page 
4129
    4129