Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Surface Crystallization of Supercooled Water in Clouds

A. Tabazadeh, Y.S. Djikaev and H. Reiss
Proceedings of the National Academy of Sciences of the United States of America
Vol. 99, No. 25 (Dec. 10, 2002), pp. 15873-15878
Stable URL: http://www.jstor.org/stable/3073874
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Surface Crystallization of Supercooled Water in Clouds
Preview not available

Abstract

The process by which liquid cloud droplets homogeneously crystallize into ice is still not well understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at -33°C, the reported volume-based freezing rates of ice in supercooled water vary by as many as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near -40°C.

Page Thumbnails

  • Thumbnail: Page 
[15873]
    [15873]
  • Thumbnail: Page 
15874
    15874
  • Thumbnail: Page 
15875
    15875
  • Thumbnail: Page 
15876
    15876
  • Thumbnail: Page 
15877
    15877
  • Thumbnail: Page 
15878
    15878