Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Trehalose Accumulation in Rice Plants Confers High Tolerance Levels to Different Abiotic Stresses

Ajay K. Garg, Ju-Kon Kim, Thomas G. Owens, Anil P. Ranwala, Yang Do Choi, Leon V. Kochian and Ray J. Wu
Proceedings of the National Academy of Sciences of the United States of America
Vol. 99, No. 25 (Dec. 10, 2002), pp. 15898-15903
Stable URL: http://www.jstor.org/stable/3073879
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Trehalose Accumulation in Rice Plants Confers High Tolerance Levels to Different Abiotic Stresses
Preview not available

Abstract

Trehalose is a nonreducing disaccharide of glucose that functions as a compatible solute in the stabilization of biological structures under abiotic stress in bacteria, fungi, and invertebrates. With the notable exception of the desiccation-tolerant "resurrection plants," trehalose is not thought to accumulate to detectable levels in most plants. We report here the regulated overexpression of Escherichia coli trehalose biosynthetic genes (otsA and otsB) as a fusion gene for manipulating abiotic stress tolerance in rice. The fusion gene has the advantages of necessitating only a single transformation event and a higher net catalytic efficiency for trehalose formation. The expression of the transgene was under the control of either tissue-specific or stress-dependent promoters. Compared with nontransgenic rice, several independent transgenic lines exhibited sustained plant growth, less photo-oxidative damage, and more favorable mineral balance under salt, drought, and low-temperature stress conditions. Depending on growth conditions, the transgenic rice plants accumulate trehalose at levels 3-10 times that of the nontransgenic controls. The observation that peak trehalose levels remain well below 1 mg/g fresh weight indicates that the primary effect of trehalose is not as a compatible solute. Rather, increased trehalose accumulation correlates with higher soluble carbohydrate levels and an elevated capacity for photosynthesis under both stress and nonstress conditions, consistent with a suggested role in modulating sugar sensing and carbohydrate metabolism. These findings demonstrate the feasibility of engineering rice for increased tolerance of abiotic stress and enhanced productivity through tissue-specific or stress-dependent overproduction of trehalose.

Page Thumbnails

  • Thumbnail: Page 
[15898]
    [15898]
  • Thumbnail: Page 
15899
    15899
  • Thumbnail: Page 
15900
    15900
  • Thumbnail: Page 
15901
    15901
  • Thumbnail: Page 
15902
    15902
  • Thumbnail: Page 
15903
    15903