Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Biochemical Correlates of Short-Term Sensitization in Aplysia: Temporal Analysis of Adenylate Cyclase Stimulation in a Perfused-Membrane Preparation

Yoram Yovell, Eric R. Kandel, Yadin Dudai and Thomas W. Abrams
Proceedings of the National Academy of Sciences of the United States of America
Vol. 84, No. 24 (Dec. 15, 1987), pp. 9285-9289
Stable URL: http://www.jstor.org/stable/30812
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Biochemical Correlates of Short-Term Sensitization in Aplysia: Temporal Analysis of Adenylate Cyclase Stimulation in a Perfused-Membrane Preparation
Preview not available

Abstract

During short-term sensitization, a simple form of nonassociative learning in Aplysia, the presentation of a single brief noxious stimulus results in enhancement of the defensive withdrawal reflex lasting minutes to tens of minutes. This behavioral plasticity involves presynaptic facilitation of synaptic transmission from the mechanosensory neurons that mediate the reflex to their central target cells. This facilitation is due to cAMP-dependent protein phosphorylation. To determine whether the time course of presynaptic facilitation might be due to a persistent increase in activity of adenylate cyclase (EC 4.6.1.1) itself, persistence of the transmitter, or yet other processes, we developed a perfused-membrane method to analyze the time course of activation of adenylate cyclase by transient stimuli. After stimulation by a pulse of stimulatory transmitter, activation of adenylate cyclase decayed within 60 sec. This finding indicates that the enzyme does not remain persistently active in the absence of transmitter and suggests that short-term retention is likely to be due to other mechanisms. Possible additional mechanisms include continued activation of the cyclase by transmitter, cellular factors extrinsic to the cyclase that prolong the time course of its activation, and persistence of processes downstream from the cyclase.

Page Thumbnails

  • Thumbnail: Page 
9285
    9285
  • Thumbnail: Page 
9286
    9286
  • Thumbnail: Page 
9287
    9287
  • Thumbnail: Page 
9288
    9288
  • Thumbnail: Page 
9289
    9289