If you need an accessible version of this item please contact JSTOR User Support

Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models

Victor Aguirregabiria and Pedro Mira
Econometrica
Vol. 70, No. 4 (Jul., 2002), pp. 1519-1543
Published by: Econometric Society
Stable URL: http://www.jstor.org/stable/3082006
Page Count: 25
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models
Preview not available

Abstract

This paper proposes a new nested algorithm (NPL) for the estimation of a class of discrete Markov decision models and studies its statistical and computational properties. Our method is based on a representation of the solution of the dynamic programming problem in the space of conditional choice probabilities. When the NPL algorithm is initialized with consistent nonparametric estimates of conditional choice probabilities, successive iterations return a sequence of estimators of the structural parameters which we call K-stage policy iteration estimators. We show that the sequence includes as extreme cases a Hotz-Miller estimator (for K = 1) and Rust's nested fixed point estimator (in the limit when K → ∞). Furthermore, the asymptotic distribution of all the estimators in the sequence is the same and equal to that of the maximum likelihood estimator. We illustrate the performance of our method with several examples based on Rust's bus replacement model. Monte Carlo experiments reveal a trade-off between finite sample precision and computational cost in the sequence of policy iteration estimators.

Page Thumbnails

  • Thumbnail: Page 
1519
    1519
  • Thumbnail: Page 
1520
    1520
  • Thumbnail: Page 
1521
    1521
  • Thumbnail: Page 
1522
    1522
  • Thumbnail: Page 
1523
    1523
  • Thumbnail: Page 
1524
    1524
  • Thumbnail: Page 
1525
    1525
  • Thumbnail: Page 
1526
    1526
  • Thumbnail: Page 
1527
    1527
  • Thumbnail: Page 
1528
    1528
  • Thumbnail: Page 
1529
    1529
  • Thumbnail: Page 
1530
    1530
  • Thumbnail: Page 
1531
    1531
  • Thumbnail: Page 
1532
    1532
  • Thumbnail: Page 
1533
    1533
  • Thumbnail: Page 
1534
    1534
  • Thumbnail: Page 
1535
    1535
  • Thumbnail: Page 
1536
    1536
  • Thumbnail: Page 
1537
    1537
  • Thumbnail: Page 
1538
    1538
  • Thumbnail: Page 
1539
    1539
  • Thumbnail: Page 
1540
    1540
  • Thumbnail: Page 
1541
    1541
  • Thumbnail: Page 
1542
    1542
  • Thumbnail: Page 
1543
    1543