Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Empirical Bayes Analysis of a Microarray Experiment

Bradley Efron, Robert Tibshirani, John D. Storey and Virginia Tusher
Journal of the American Statistical Association
Vol. 96, No. 456 (Dec., 2001), pp. 1151-1160
Stable URL: http://www.jstor.org/stable/3085878
Page Count: 10
  • Download ($14.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Empirical Bayes Analysis of a Microarray Experiment
Preview not available

Abstract

Microarrays are a novel technology that facilitates the simultaneous measurement of thousands of gene expression levels. A typical microarray experiment can produce millions of data points, raising serious problems of data reduction, and simultaneous inference. We consider one such experiment in which oligonucleotide arrays were employed to assess the genetic effects of ionizing radiation on seven thousand human genes. A simple nonparametric empirical Bayes model is introduced, which is used to guide the efficient reduction of the data to a single summary statistic per gene, and also to make simultaneous inferences concerning which genes were affected by the radiation. Although our focus is on one specific experiment, the proposed methods can be applied quite generally. The empirical Bayes inferences are closely related to the frequentist false discovery rate (FDR) criterion.

Page Thumbnails

  • Thumbnail: Page 
1151
    1151
  • Thumbnail: Page 
1152
    1152
  • Thumbnail: Page 
1153
    1153
  • Thumbnail: Page 
1154
    1154
  • Thumbnail: Page 
1155
    1155
  • Thumbnail: Page 
1156
    1156
  • Thumbnail: Page 
1157
    1157
  • Thumbnail: Page 
1158
    1158
  • Thumbnail: Page 
1159
    1159
  • Thumbnail: Page 
1160
    1160