Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

A Bayesian Model for Detecting Acute Change in Nonlinear Profiles

Peter Müller, Gary L. Rosner, Lurdes Y. T. Inoue and Mark W. Dewhirst
Journal of the American Statistical Association
Vol. 96, No. 456 (Dec., 2001), pp. 1215-1222
Stable URL: http://www.jstor.org/stable/3085884
Page Count: 8
  • Download ($14.00)
  • Cite this Item
A Bayesian Model for Detecting Acute Change in Nonlinear Profiles
Preview not available

Abstract

We propose a model for longitudinal data with random effects that includes model-based smoothing of measurements over time. This research is motivated by experiments evaluating the hemodynamic effects of various agents in tumor-bearing rats. In one set of experiments, the rats breathed room air, followed by carbogen (a mixture of pure oxygen and carbon dioxide). The experimental responses are longitudinal measurements of oxygen pressure measured in tissue, tumor blood flow, and mean arterial pressure. The nature of the recorded responses does not allow any meaningful parametric form to model these profiles over time. Additionally, response patterns differ widely across individuals. Therefore, we propose a nonparametric regression to model the profile data over time. We propose a dynamic state-space model to smooth the data at the profile level. Using the state parameters, we formally define "change" in the measured responses. A hierarchical extension allows inference to include a regression on covariates. The proposed approach provides a modeling framework for any longitudinal data, where no parsimonious parametric model is available at the level of the repeated measurements and a hierarchical modeling of some feature of a smooth fit for these profiles data is desired. The proposed MCMC algorithm for inference on the hierarchical extension is appropriate in any hierarchical model in which posterior simulation for the submodels is significantly easier.

Page Thumbnails

  • Thumbnail: Page 
1215
    1215
  • Thumbnail: Page 
1216
    1216
  • Thumbnail: Page 
1217
    1217
  • Thumbnail: Page 
1218
    1218
  • Thumbnail: Page 
1219
    1219
  • Thumbnail: Page 
1220
    1220
  • Thumbnail: Page 
1221
    1221
  • Thumbnail: Page 
1222
    1222