Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Stand-Level Effects on the Role of Decaying Logs as Vascular Plant Habitat in Adirondack Northern Hardwood Forests

Gregory G. McGee
The Journal of the Torrey Botanical Society
Vol. 128, No. 4 (Oct. - Dec., 2001), pp. 370-380
Published by: Torrey Botanical Society
DOI: 10.2307/3088669
Stable URL: http://www.jstor.org/stable/3088669
Page Count: 11
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Stand-Level Effects on the Role of Decaying Logs as Vascular Plant Habitat in Adirondack Northern Hardwood Forests
Preview not available

Abstract

The objectives of this study were to determine (1) if decaying logs provide critical habitat for any vascular plants in Adirondack northern hardwood forests; and (2) whether environmental factors that vary at the stand-scale influence the role of decaying logs as vascular plant habitat. Herbaceous ramet densities and woody seedling/sapling basal area were characterized on well-decayed logs and adjacent forest floor microsites in three northern hardwood stand types: old-growth, partially-cut, and 15- to 29-year-old shelterwoods. No common herbaceous species were restricted to the log microsites, although Dryopteris intermedia had greater densities on logs. Betula alleghaniensis, Tsuga canadensis and Abies balsamea all attained greater basal areas (stems $\leq 15.0\>cm$ diameter at the root collar) on decaying logs, while Acer pensylvanicum, Acer saccharum, Fagus grandifolia and Viburnum alnifolium had greater basal areas on forest floor microsites. Average $(\pm\>1\>SD)$ total basal area of woody stems was greatest in the shelterwoods $(1775\pm615\>mm^2\>m^{-2})$, compared to the partially-cut $(714\pm266\>mm^2\>m^{-2})$ and old-growth $(503\pm657\>mm^2\>m^{-2})$ stands. Betual alleghaniensis accounted for a substantial proportion of the basal area in the shelterwoods. In these shelterwood stands B. alleghaniensis basal areas were not statistically discernible between the forest floor and log microsites (P = 0.07). However, in partially-cut stands, B. alleghaniensis basal area was greater on the decaying log microsites (P = 0.05). In the old-growth stands, no B. alleghaniensis stems > 2 cm diameter were sampled. This study indicates that decaying logs provide early establishment sites for some tree species and the fern, D. intermedia, in northern hardwood forests. While B. alleghaniensis favored logs as establishment sites in the partially-cut stands, this species was capable of widespread establishment throughout the shelterwood stands. Even though B. alleghaniensis readily germinated on decaying logs, its recruitment into larger sapling size classes appeared to be consistently limited by factors varying at the stand level (e.g., light levels).

Page Thumbnails

  • Thumbnail: Page 
370
    370
  • Thumbnail: Page 
371
    371
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374
  • Thumbnail: Page 
375
    375
  • Thumbnail: Page 
376
    376
  • Thumbnail: Page 
377
    377
  • Thumbnail: Page 
378
    378
  • Thumbnail: Page 
379
    379
  • Thumbnail: Page 
380
    380