Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Bayesian Measures of Model Complexity and Fit

David J. Spiegelhalter, Nicola G. Best, Bradley P. Carlin and Angelika van der Linde
Journal of the Royal Statistical Society. Series B (Statistical Methodology)
Vol. 64, No. 4 (2002), pp. 583-639
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/3088806
Page Count: 57
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Bayesian Measures of Model Complexity and Fit
Preview not available

Abstract

We consider the problem of comparing complex hierarchical models in which the number of parameters is not clearly defined. Using an information theoretic argument we derive a measure pD for the effective number of parameters in a model as the difference between the posterior mean of the deviance and the deviance at the posterior means of the parameters of interest. In general pD approximately corresponds to the trace of the product of Fisher's information and the posterior covariance, which in normal models is the trace of the 'hat' matrix projecting observations onto fitted values. Its properties in exponential families are explored. The posterior mean deviance is suggested as a Bayesian measure of fit or adequacy, and the contributions of individual observations to the fit and complexity can give rise to a diagnostic plot of deviance residuals against leverages. Adding pD to the posterior mean deviance gives a deviance information criterion for comparing models, which is related to other information criteria and has an approximate decision theoretic justification. The procedure is illustrated in some examples, and comparisons are drawn with alternative Bayesian and classical proposals. Throughout it is emphasized that the quantities required are trivial to compute in a Markov chain Monte Carlo analysis.

Page Thumbnails

  • Thumbnail: Page 
[583]
    [583]
  • Thumbnail: Page 
584
    584
  • Thumbnail: Page 
585
    585
  • Thumbnail: Page 
586
    586
  • Thumbnail: Page 
587
    587
  • Thumbnail: Page 
588
    588
  • Thumbnail: Page 
589
    589
  • Thumbnail: Page 
590
    590
  • Thumbnail: Page 
591
    591
  • Thumbnail: Page 
592
    592
  • Thumbnail: Page 
593
    593
  • Thumbnail: Page 
594
    594
  • Thumbnail: Page 
595
    595
  • Thumbnail: Page 
596
    596
  • Thumbnail: Page 
597
    597
  • Thumbnail: Page 
598
    598
  • Thumbnail: Page 
599
    599
  • Thumbnail: Page 
600
    600
  • Thumbnail: Page 
601
    601
  • Thumbnail: Page 
602
    602
  • Thumbnail: Page 
603
    603
  • Thumbnail: Page 
604
    604
  • Thumbnail: Page 
605
    605
  • Thumbnail: Page 
606
    606
  • Thumbnail: Page 
607
    607
  • Thumbnail: Page 
608
    608
  • Thumbnail: Page 
609
    609
  • Thumbnail: Page 
610
    610
  • Thumbnail: Page 
611
    611
  • Thumbnail: Page 
612
    612
  • Thumbnail: Page 
613
    613
  • Thumbnail: Page 
614
    614
  • Thumbnail: Page 
615
    615
  • Thumbnail: Page 
616
    616
  • Thumbnail: Page 
617
    617
  • Thumbnail: Page 
618
    618
  • Thumbnail: Page 
619
    619
  • Thumbnail: Page 
620
    620
  • Thumbnail: Page 
621
    621
  • Thumbnail: Page 
622
    622
  • Thumbnail: Page 
623
    623
  • Thumbnail: Page 
624
    624
  • Thumbnail: Page 
625
    625
  • Thumbnail: Page 
626
    626
  • Thumbnail: Page 
627
    627
  • Thumbnail: Page 
628
    628
  • Thumbnail: Page 
629
    629
  • Thumbnail: Page 
630
    630
  • Thumbnail: Page 
631
    631
  • Thumbnail: Page 
632
    632
  • Thumbnail: Page 
633
    633
  • Thumbnail: Page 
634
    634
  • Thumbnail: Page 
635
    635
  • Thumbnail: Page 
636
    636
  • Thumbnail: Page 
637
    637
  • Thumbnail: Page 
638
    638
  • Thumbnail: Page 
639
    639