Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Respondent-Driven Sampling: A New Approach to the Study of Hidden Populations

Douglas D. Heckathorn
Social Problems
Vol. 44, No. 2 (May, 1997), pp. 174-199
DOI: 10.2307/3096941
Stable URL: http://www.jstor.org/stable/3096941
Page Count: 26
  • Read Online (Free)
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Respondent-Driven Sampling: A New Approach to the Study of Hidden Populations
Preview not available

Abstract

A population is "hidden" when no sampling frame exists and public acknowledgment of membership in the population is potentially threatening. Accessing such populations is difficult because standard probability sampling methods produce low response rates and responses that lack candor. Existing procedures for sampling these populations, including snowball and other chain-referral samples, the key-informant approach, and targeted sampling, introduce well-documented biases into their samples. This paper introduces a new variant of chain-referral sampling, respondent-driven sampling, that employs a dual system of structured incentives to overcome some of the deficiencies of such samples. A theoretic analysis, drawing on both Markov-chain theory and the theory of biased networks, shows that this procedure can reduce the biases generally associated with chain-referral methods. The analysis includes a proof showing that even though sampling begins with an arbitrarily chosen set of initial subjects, as do most chain-referral samples, the composition of the ultimate sample is wholly independent of those initial subjects. The analysis also includes a theoretic specification of the conditions under which the procedure yields unbiased samples. Empirical results, based on surveys of 277 active drug injectors in Connecticut, support these conclusions. Finally, the conclusion discusses how respondent-driven sampling can improve both network sampling and ethnographic 44investigation.

Page Thumbnails

  • Thumbnail: Page 
174
    174
  • Thumbnail: Page 
175
    175
  • Thumbnail: Page 
176
    176
  • Thumbnail: Page 
177
    177
  • Thumbnail: Page 
178
    178
  • Thumbnail: Page 
179
    179
  • Thumbnail: Page 
180
    180
  • Thumbnail: Page 
181
    181
  • Thumbnail: Page 
182
    182
  • Thumbnail: Page 
183
    183
  • Thumbnail: Page 
184
    184
  • Thumbnail: Page 
185
    185
  • Thumbnail: Page 
186
    186
  • Thumbnail: Page 
187
    187
  • Thumbnail: Page 
188
    188
  • Thumbnail: Page 
189
    189
  • Thumbnail: Page 
190
    190
  • Thumbnail: Page 
191
    191
  • Thumbnail: Page 
192
    192
  • Thumbnail: Page 
193
    193
  • Thumbnail: Page 
194
    194
  • Thumbnail: Page 
195
    195
  • Thumbnail: Page 
196
    196
  • Thumbnail: Page 
197
    197
  • Thumbnail: Page 
198
    198
  • Thumbnail: Page 
199
    199