Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

The Statistical Evaluation of Social Network Dynamics

Tom A. B. Snijders
Sociological Methodology
Vol. 31 (2001), pp. 361-395
Stable URL: http://www.jstor.org/stable/3097281
Page Count: 35
  • Get Access
  • Download ($14.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
The Statistical Evaluation of Social Network Dynamics
Preview not available

Abstract

A class of statistical models is proposed for longitudinal network data. The dependent variable is the changing (or evolving) relation network, represented by two or more observations of a directed graph with a fixed set of actors. The network evolution is modeled as the consequence of the actors making new choices, or withdrawing existing choices, on the basis of functions, with fixed and random components, that the actors try to maximize. Individual and dyadic exogenous variables can be used as covariates. The change in the network is modeled as the stochastic result of network effects (reciprocity, transitivity, etc.) and these covariates. The existing network structure is a dynamic constraint for the evolution of the structure itself. The models are continuous-time Markov chain models that can be implemented as simulation models. The model parameters are estimated from observed data. For estimating and testing these models, statistical procedures are proposed that are based on the method of moments. The statistical procedures are implemented using a stochastic approximation algorithm based on computer simulations of the network evolution process.

Page Thumbnails

  • Thumbnail: Page 
361
    361
  • Thumbnail: Page 
362
    362
  • Thumbnail: Page 
363
    363
  • Thumbnail: Page 
364
    364
  • Thumbnail: Page 
365
    365
  • Thumbnail: Page 
366
    366
  • Thumbnail: Page 
367
    367
  • Thumbnail: Page 
368
    368
  • Thumbnail: Page 
369
    369
  • Thumbnail: Page 
370
    370
  • Thumbnail: Page 
371
    371
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374
  • Thumbnail: Page 
375
    375
  • Thumbnail: Page 
376
    376
  • Thumbnail: Page 
377
    377
  • Thumbnail: Page 
378
    378
  • Thumbnail: Page 
379
    379
  • Thumbnail: Page 
380
    380
  • Thumbnail: Page 
381
    381
  • Thumbnail: Page 
382
    382
  • Thumbnail: Page 
383
    383
  • Thumbnail: Page 
384
    384
  • Thumbnail: Page 
385
    385
  • Thumbnail: Page 
386
    386
  • Thumbnail: Page 
387
    387
  • Thumbnail: Page 
388
    388
  • Thumbnail: Page 
389
    389
  • Thumbnail: Page 
390
    390
  • Thumbnail: Page 
391
    391
  • Thumbnail: Page 
392
    392
  • Thumbnail: Page 
393
    393
  • Thumbnail: Page 
394
    394
  • Thumbnail: Page 
395
    395