If you need an accessible version of this item please contact JSTOR User Support

The Scale of Community Structure: Habitat Variation and Avian Guilds in Tropical Forest Understory

Peter B. Pearman
Ecological Monographs
Vol. 72, No. 1 (Feb., 2002), pp. 19-39
DOI: 10.2307/3100083
Stable URL: http://www.jstor.org/stable/3100083
Page Count: 21
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
The Scale of Community Structure: Habitat Variation and Avian Guilds in Tropical Forest Understory
Preview not available

Abstract

Both local and regional habitat characteristics influence species richness and community structure. The scale at which communities are studied, however, affects the detection of relationships between habitat characteristics and patterns of habitat selection, species diversity, and species composition, and may obscure observation of differences in how species perceive the scale of environmental variation. To determine how environmental variation at different scales is related to species occurrence and richness, I analyze mist net sampling data on several guilds of forest understory birds. Bird capture, vegetation, and physical environment data come from 23 0.5-ha study sites in primary and secondary forest in Amazonian Ecuador. The percentages of primary forest within concentric circles around each site form forest imbeddedness measures (FIMs), which are evaluated using satellite imagery. Variation in FIM size represents different measurement scales for determining forest cover. Primary forest cover is also analyzed in successively larger tori surrounding sites and is used, after variable reduction with Principal Components Analysis, to summarize variation in forest cover around sites. Linear regression, surface trend analysis, and ordination help to quantify how variation in guild composition and species richness is explained by forest cover, vegetation structure, and physical environment. Species composition is related to variation in primary forest cover, primarily within 200-600 m of study sites. Canonical Correspondence Analysis (CCA) indicates that nectarivores, shrub-layer frugivores, and ant-following birds are captured in areas with relatively low primary forest cover. In contrast, shrub-layer insectivores, shrub-layer omnivores, and birds probing dead foliage for large insects tend to be captured in areas of relatively high primary forest cover. The species richness of insect gleaners, ant followers, and omnivores is statistically related to the percent cover of primary forest within hundreds of meters from the study sites. This suggests that some mechanisms that influence guild composition act over substantial distances. Nonetheless, the small radii of FIMs related to the species richness of dead-leaf probers suggests that local conditions and variation in forest cover over short (<200 m) distances directly or indirectly influence species richness of some primary forest birds. The significant relationship between temperature variation among capture sites and species richness of ant-following birds suggests that these species choose among habitats in a temperature range at which physiological constraints operate, either directly on the birds themselves or on the ants they follow. Species richness within the nectarivores, in contrast, shows no relationship with large-scale variation in primary forest cover. The radius of the FIM most closely associated with species richness differs among guilds, which suggests variation in the scale at which forest cover is associated with guild structure, as well as variation in the strength of the association. Differences in the scale of relationships between environment and species richness among guilds suggest that the mechanisms that influence both species' habitat use and community structure differ among guilds. A single mechanism, operating at a single scale, is inconsistent with these patterns. Independent data from eight additional sites suggest that prediction of species richness from surrounding forest structure could be useful for managing human impacts on tropical avian communities.

Page Thumbnails

  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25
  • Thumbnail: Page 
26
    26
  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28
  • Thumbnail: Page 
29
    29
  • Thumbnail: Page 
30
    30
  • Thumbnail: Page 
31
    31
  • Thumbnail: Page 
32
    32
  • Thumbnail: Page 
33
    33
  • Thumbnail: Page 
34
    34
  • Thumbnail: Page 
35
    35
  • Thumbnail: Page 
36
    36
  • Thumbnail: Page 
37
    37
  • Thumbnail: Page 
38
    38
  • Thumbnail: Page 
39
    39