Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Identity of Proofs Based on Normalization and Generality

Kosta Došen
The Bulletin of Symbolic Logic
Vol. 9, No. 4 (Dec., 2003), pp. 477-503
Stable URL: http://www.jstor.org/stable/3133721
Page Count: 27
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Identity of Proofs Based on Normalization and Generality
Preview not available

Abstract

Some thirty years ago, two proposals were made concerning criteria for identity of proofs. Prawitz proposed to analyze identity of proofs in terms of the equivalence relation based on reduction to normal form in natural deduction. Lambek worked on a normalization proposal analogous to Prawitz's, based on reduction to cut-free form in sequent systems, but he also suggested understanding identity of proofs in terms of an equivalence relation based on generality, two derivations having the same generality if after generalizing maximally the rules involved in them they yield the same premises and conclusions up to a renaming of variables. These two proposals proved to be extensionally equivalent only for limited fragments of logic. The normalization proposal stands behind very successful applications of the typed lambda calculus and of category theory in the proof theory of intuitionistic logic. In classical logic, however, it did not fare well. The generality proposal was rather neglected in logic, though related matters were much studied in pure category theory in connection with coherence problems, and there are also links to low-dimensional topology and linear algebra. This proposal seems more promising than the other one for the general proof theory of classical logic.

Page Thumbnails

  • Thumbnail: Page 
477
    477
  • Thumbnail: Page 
478
    478
  • Thumbnail: Page 
479
    479
  • Thumbnail: Page 
480
    480
  • Thumbnail: Page 
481
    481
  • Thumbnail: Page 
482
    482
  • Thumbnail: Page 
483
    483
  • Thumbnail: Page 
484
    484
  • Thumbnail: Page 
485
    485
  • Thumbnail: Page 
486
    486
  • Thumbnail: Page 
487
    487
  • Thumbnail: Page 
488
    488
  • Thumbnail: Page 
489
    489
  • Thumbnail: Page 
490
    490
  • Thumbnail: Page 
491
    491
  • Thumbnail: Page 
492
    492
  • Thumbnail: Page 
493
    493
  • Thumbnail: Page 
494
    494
  • Thumbnail: Page 
495
    495
  • Thumbnail: Page 
496
    496
  • Thumbnail: Page 
497
    497
  • Thumbnail: Page 
498
    498
  • Thumbnail: Page 
499
    499
  • Thumbnail: Page 
500
    500
  • Thumbnail: Page 
501
    501
  • Thumbnail: Page 
502
    502
  • Thumbnail: Page 
503
    503