Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Soluble Epoxide Hydrolase Encoded by EPXH2 Is a Bifunctional Enzyme with Novel Lipid Phosphate Phosphatase Activity

John W. Newman, Christophe Morisseau, Todd R. Harris and Bruce D. Hammock
Proceedings of the National Academy of Sciences of the United States of America
Vol. 100, No. 4 (Feb. 18, 2003), pp. 1558-1563
Stable URL: http://www.jstor.org/stable/3138397
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Soluble Epoxide Hydrolase Encoded by EPXH2 Is a Bifunctional Enzyme with Novel Lipid Phosphate Phosphatase Activity
Preview not available

Abstract

The gene EPXH2 encodes for the soluble epoxide hydrolase (sEH), an enzyme involved in the regulation of cardiovascular and renal physiology containing two distinct domains connected via a proline-rich linker. The C-terminal domain containing the EH catalytic activity has been well studied. In contrast, a function for the N-terminal domain, which has high homology to the haloacid dehalogenase family of phosphatases, has not been definitively reported. In this study we describe the N-terminal domain as a functional phosphatase unaffected by a number of classic phosphatase inhibitors. Assuming a functional association between these catalytic activities, dihydroxy lipid phosphates were rationalized as potential endogenous substrates. A series of phosphorylated hydroxy lipids were therefore synthesized and found to be excellent substrates for the human sEH. The best substrate tested was the monophosphate of dihydroxy stearic acid (threo-9/10-phosphonoxy-hydroxy-octadecanoic acid) with $K_m = 21 \pm 0.3\>\mu M,\>V_{Max} = 338 \pm 12\>nmol\!\cdot\!min^{-1}$, and $k_{cat} = 0.35 \pm 0.01\>s^{-1}$. Therefore dihydroxy lipid phosphates are possible candidates for the endogenous substrates of the sEH N-terminal domain, which would represent a novel branch of fatty acid metabolism with potential signaling functions.

Page Thumbnails

  • Thumbnail: Page 
[1558]
    [1558]
  • Thumbnail: Page 
1559
    1559
  • Thumbnail: Page 
1560
    1560
  • Thumbnail: Page 
1561
    1561
  • Thumbnail: Page 
1562
    1562
  • Thumbnail: Page 
1563
    1563