Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Deoxyxylulose Phosphate Pathway of Isoprenoid Biosynthesis: Studies on the Mechanisms of the Reactions Catalyzed by IspG and IspH Protein

Felix Rohdich, Ferdinand Zepeck, Petra Adam, Stefan Hecht, Johannes Kaiser, Ralf Laupitz, Tobias Gräwert, Sabine Amslinger, Wolfgang Eisenreich, Adelbert Bacher and Duilio Arigoni
Proceedings of the National Academy of Sciences of the United States of America
Vol. 100, No. 4 (Feb. 18, 2003), pp. 1586-1591
Stable URL: http://www.jstor.org/stable/3138402
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Deoxyxylulose Phosphate Pathway of Isoprenoid Biosynthesis: Studies on the Mechanisms of the Reactions Catalyzed by IspG and IspH Protein
Preview not available

Abstract

Earlier in vivo studies have shown that the sequential action of the IspG and IspH proteins is essential for the reductive transformation of 2C-methyl-D-erythritol 2,4-cyclodiphosphate into dimethylallyl diphosphate and isopentenyl diphosphate via 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. A recombinant fusion protein comprising maltose binding protein and IspG protein domains was purified from a recombinant Escherichia coli strain. The purified protein failed to transform 2C-methyl-D-erythritol 2,4-cyclodiphosphate into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate, but catalytic activity could be restored by the addition of crude cell extract from an ispG-deficient E. coli mutant. This indicates that auxiliary proteins are required, probably as shuttles for redox equivalents. On activation by photoreduced 10-methyl-5-deaza-isoalloxazine, the recombinant protein catalyzed the formation of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate from 2C-methyl-D-erythritol 2,4-cyclodiphosphate at a rate of $1\>nmol\!\cdot\!min^{-1}\!\cdot\!mg^{-1}$. Similarly, activation by photoreduced 10-methyl-5-deaza-isoalloxazine enabled purified IspH protein to catalyze the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate into a 6:1 mixture of isopentenyl diphosphate and dimethylallyl diphosphate at a rate of $0.4\>\mu mol\!\cdot\!min^{-1}\!\cdot\!mg^{-1}$. IspH protein could also be activated by a mixture of flavodoxin, flavodoxin reductase, and NADPH at a rate of $3\>nmol\!\cdot\!min^{-1}\!\cdot\!mg^{-1}$. The striking similarities of IspG and IspH protein are discussed, and plausible mechanistic schemes are proposed for the two reactions.

Page Thumbnails

  • Thumbnail: Page 
[1586]
    [1586]
  • Thumbnail: Page 
1587
    1587
  • Thumbnail: Page 
1588
    1588
  • Thumbnail: Page 
1589
    1589
  • Thumbnail: Page 
1590
    1590
  • Thumbnail: Page 
1591
    1591