Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Epitope and Isotype Specificities of Antibodies to β-Amyloid Peptide for Protection against Alzheimer's Disease-like Neuropathology

Frédérique Bard, Robin Barbour, Catherine Cannon, Robert Carretto, Michael Fox, Dora Games, Teresa Guido, Kathleen Hoenow, Kang Hu, Kelly Johnson-Wood, Karen Khan, Dora Kholodenko, Celeste Lee, Mike Lee, Ruth Motter, Minh Nguyen, Amanda Reed, Dale Schenk, Pearl Tang, Nicki Vasquez, Peter Seubert and Ted Yednock
Proceedings of the National Academy of Sciences of the United States of America
Vol. 100, No. 4 (Feb. 18, 2003), pp. 2023-2028
Stable URL: http://www.jstor.org/stable/3138478
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Epitope and Isotype Specificities of Antibodies to β-Amyloid Peptide for Protection against Alzheimer's Disease-like Neuropathology
Preview not available

Abstract

Transgenic PDAPP mice, which express a disease-linked isoform of the human amyloid precursor protein, exhibit CNS pathology that is similar to Alzheimer's disease. In an age-dependent fashion, the mice develop plaques containing β-amyloid peptide (Aβ) and exhibit neuronal dystrophy and synaptic loss. It has been shown in previous studies that pathology can be prevented and even reversed by immunization of the mice with the Aβ peptide. Similar protection could be achieved by passive administration of some but not all monoclonal antibodies against Aβ. In the current studies we sought to define the optimal antibody response for reducing neuropathology. Immune sera with reactivity against different Aβ epitopes and monoclonal antibodies with different isotypes were examined for efficacy both ex vivo and in vivo. The studies showed that: (i) of the purified or elicited antibodies tested, only antibodies against the N-terminal regions of Aβ were able to invoke plaque clearance; (ii) plaque binding correlated with a clearance response and neuronal protection, whereas the ability of antibodies to capture soluble Aβ was not necessarily correlated with efficacy; (iii) the isotype of the antibody dramatically influenced the degree of plaque clearance and neuronal protection; (iv) high affinity of the antibody for Fc receptors on microglial cells seemed more important than high affinity for Aβ itself; and (v) complement activation was not required for plaque clearance. These results indicate that antibody Fc-mediated plaque clearance is a highly efficient and effective process for protection against neuropathology in an animal model of Alzheimer's disease.

Page Thumbnails

  • Thumbnail: Page 
[2023]
    [2023]
  • Thumbnail: Page 
2024
    2024
  • Thumbnail: Page 
2025
    2025
  • Thumbnail: Page 
2026
    2026
  • Thumbnail: Page 
2027
    2027
  • Thumbnail: Page 
2028
    2028