Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Modular Organization of Internal Models of Tools in the Human Cerebellum

Hiroshi Imamizu, Tomoe Kuroda, Satoru Miyauchi, Toshinori Yoshioka and Mitsuo Kawato
Proceedings of the National Academy of Sciences of the United States of America
Vol. 100, No. 9 (Apr. 29, 2003), pp. 5461-5466
Stable URL: http://www.jstor.org/stable/3139734
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Preview not available
Preview not available

Abstract

Human capabilities in dexterously manipulating many different tools suggest modular neural organization at functional levels, but anatomical modularity underlying the capabilities has yet to be demonstrated. Although modularity in phylogenetically older parts of the cerebellum is well known, comparable modularity in the lateral cerebellum for cognitive functions remains unknown. We investigated these issues by functional MRI (fMRI) based on our previous findings of a cerebellar internal model of a tool. After subjects intensively learned to manipulate two novel tools (the rotated mouse whose cursor appeared at a rotated position, and the velocity mouse whose cursor velocity was proportional to the mouse position), they could easily switch between the two. The lateral and posterior cerebellar activities for the two different tools were spatially segregated, and their overlaps were <10%, even at low statistical thresholds. Activities of the rotated mouse were more anterior and lateral than the velocity mouse activities. These results were consistent with predictions by the MOdular Selection And Identification Controller (MOSAIC) model that multiple internal models compete to partition sensory-motor experiences and their outputs are linearly combined for a particular context.

Page Thumbnails

  • Thumbnail: Page 
[5461]
    [5461]
  • Thumbnail: Page 
5462
    5462
  • Thumbnail: Page 
5463
    5463
  • Thumbnail: Page 
5464
    5464
  • Thumbnail: Page 
5465
    5465
  • Thumbnail: Page 
5466
    5466