Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Insulin-Induced Phosphorylation of FKHR (Foxo1) Targets to Proteasomal Degradation

Hitomi Matsuzaki, Hiroaki Daitoku, Mitsutoki Hatta, Keiji Tanaka and Akiyoshi Fukamizu
Proceedings of the National Academy of Sciences of the United States of America
Vol. 100, No. 20 (Sep. 30, 2003), pp. 11285-11290
Stable URL: http://www.jstor.org/stable/3147783
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Insulin-Induced Phosphorylation of FKHR (Foxo1) Targets to Proteasomal Degradation
Preview not available

Abstract

Forkhead transcription factor FKHR (Foxo1) is a key regulator of glucose homeostasis, cell-cycle progression, and apoptosis. It has been shown that FKHR is phosphorylated via insulin or growth factor signaling cascades, resulting in its cytoplasmic retention and the repression of target gene expression. Here, we investigate the fate of FKHR after cells are stimulated by insulin. We show that insulin treatment decreases endogenous FKHR proteins in HepG2 cells, which is inhibited by proteasome inhibitors. FKHR is ubiquitinated in vivo and in vitro, and insulin enhances the ubiquitination in the cells. In addition, the signal to FKHR degradation from insulin is mediated by the phosphatidylinositol 3-kinase pathway, and the mutation of FKHR at the serine or threonine residues phosphorylated by protein kinase B, a downstream target of phosphatidylinositol 3-kinase, inhibits the ubiquitination in vivo and in vitro. Finally, efficient ubiquitination of FKHR requires both phosphorylation and cytoplasmic retention in the cells. These results demonstrate that the insulin-induced phosphorylation of FKHR leads to the multistep negative regulation, not only by the nuclear exclusion but also the ubiquitination-mediated degradation.

Page Thumbnails

  • Thumbnail: Page 
[11285]
    [11285]
  • Thumbnail: Page 
11286
    11286
  • Thumbnail: Page 
11287
    11287
  • Thumbnail: Page 
11288
    11288
  • Thumbnail: Page 
11289
    11289
  • Thumbnail: Page 
11290
    11290