Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Model for the Cooperative Free Energy Transduction and Kinetics of ATP Hydrolysis by F1-ATPase

Yi Qin Gao, Wei Yang, Rudolph A. Marcus and Martin Karplus
Proceedings of the National Academy of Sciences of the United States of America
Vol. 100, No. 20 (Sep. 30, 2003), pp. 11339-11344
Stable URL: http://www.jstor.org/stable/3147792
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Model for the Cooperative Free Energy Transduction and Kinetics of ATP Hydrolysis by F1-ATPase
Preview not available

Abstract

Although the binding change mechanism of rotary catalysis by which F1-ATPase hydrolyzes ATP has been supported by equilibrium, kinetic, and structural observations, many questions concerning the function remain unanswered. Because of the importance of this enzyme, the search for a full understanding of its mechanism is a key problem in structural biology. Making use of the results of free energy simulations and experimental binding constant measurements, a model is developed for the free energy change during the hydrolysis cycle. This model makes possible the development of a kinetic scheme for ATP hydrolysis by F1-ATPase, in which the rate constants are associated with specific configurations of the β subunits. An essential new element is that the strong binding site for ADP,Pi is shown to be the βDP site, in contrast to the strong binding site for ATP, which is βTP. This result provides a rationale for the rotation of the γ subunit, which induces the cooperativity required for a tri-site binding change mechanism. The model explains a series of experimental data, including the ATP concentration dependence of the rate of hydrolysis and catalytic site occupation for both the Escherichia coli F1-ATPase (EcF1) and Thermophilic Bacillus PS3 F1-ATPase (TF1), which have different behavior.

Page Thumbnails

  • Thumbnail: Page 
[11339]
    [11339]
  • Thumbnail: Page 
11340
    11340
  • Thumbnail: Page 
11341
    11341
  • Thumbnail: Page 
11342
    11342
  • Thumbnail: Page 
11343
    11343
  • Thumbnail: Page 
11344
    11344