If you need an accessible version of this item please contact JSTOR User Support

Maximum Dynamic Entropy Models

Majid Asadi, Nader Ebrahimi, G. G. Hamedani and Ehsan S. Soofi
Journal of Applied Probability
Vol. 41, No. 2 (Jun., 2004), pp. 379-390
Stable URL: http://www.jstor.org/stable/3216023
Page Count: 12
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Maximum Dynamic Entropy Models
Preview not available

Abstract

A formal approach to produce a model for the data-generating distribution based on partial knowledge is the well-known maximum entropy method. In this approach, partial knowledge about the data-generating distribution is formulated in terms of some information constraints and the model is obtained by maximizing the Shannon entropy under these constraints. Frequently, in reliability analysis the problem of interest is the lifetime beyond an age t. In such cases, the distribution of interest for computing uncertainty and information is the residual distribution. The information functions involving a residual life distribution depend on t, and hence are dynamic. The maximum dynamic entropy (MDE) model is the distribution with the density that maximizes the dynamic entropy for all t. We provide a result that relates the orderings of dynamic entropy and the hazard function for distributions with monotone densities. Applications include dynamic entropy ordering within some parametric families of distributions, orderings of distributions of lifetimes of systems and their components connected in series and parallel, record values, and formulation of constraints for the MDE model in terms of the evolution paths of the hazard function and mean residual lifetime function. In particular, we identify classes of distributions in which some well-known distributions, including the mixture of two exponential distributions and the mixture of two Pareto distributions, are the MDE models.

Page Thumbnails

  • Thumbnail: Page 
379
    379
  • Thumbnail: Page 
380
    380
  • Thumbnail: Page 
381
    381
  • Thumbnail: Page 
382
    382
  • Thumbnail: Page 
383
    383
  • Thumbnail: Page 
384
    384
  • Thumbnail: Page 
385
    385
  • Thumbnail: Page 
386
    386
  • Thumbnail: Page 
387
    387
  • Thumbnail: Page 
388
    388
  • Thumbnail: Page 
389
    389
  • Thumbnail: Page 
390
    390