Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Zooplankton (Especially Crustaceans and Rotifers) as Indicators of Water Quality

John E. Gannon and Richard S. Stemberger
Transactions of the American Microscopical Society
Vol. 97, No. 1 (Jan., 1978), pp. 16-35
Published by: Wiley on behalf of American Microscopical Society
DOI: 10.2307/3225681
Stable URL: http://www.jstor.org/stable/3225681
Page Count: 20
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Zooplankton (Especially Crustaceans and Rotifers) as Indicators of Water Quality
Preview not available

Abstract

Zooplankters have potential value as assessors of tropic conditions. They respond quickly to environmental change and may be effective indicators of subtle alterations in water quality. Since most species are widely distributed in diverse environments, those with greatest value are ones limited to extremes of trophic lake types (i.e., oligotrophy, eutrophy, and dystrophy). In the wide range of ill-defined intermediate lake types, quantitative data on zooplankton community composition offers more potential than qualitative information on the presence or absence of certain species. The ratio of calanoid copepods to other major groups of zooplankton appears to be of value in identifying relative differences in trophic conditions. Multivariate analyses based on distribution and abundance of rotifer and crustacean species have proved useful in delineating major water masses of different trophic conditions in large lake systems. But caution must be exercised in establishing one-to-one causal relationships between zooplankton composition and trophic conditions since other factors, especially toxic pollutants and size-selective predation, may exert considerable influence on changes in the community composition.

Page Thumbnails

  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25
  • Thumbnail: Page 
26
    26
  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28
  • Thumbnail: Page 
29
    29
  • Thumbnail: Page 
30
    30
  • Thumbnail: Page 
31
    31
  • Thumbnail: Page 
32
    32
  • Thumbnail: Page 
33
    33
  • Thumbnail: Page 
34
    34
  • Thumbnail: Page 
35
    35