Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

Journal Article

Models of Data: A Theory of How People Evaluate Data

Clark A. Chinn and William F. Brewer
Cognition and Instruction
Vol. 19, No. 3 (2001), pp. 323-393
Published by: Taylor & Francis, Ltd.
Stable URL: http://www.jstor.org/stable/3233918
Page Count: 71
Were these topics helpful?
See somethings inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Download ($46.00)
  • Add to My Lists
  • Cite this Item
Models of Data: A Theory of How People Evaluate Data
Preview not available

Abstract

This article reports the results of a study investigating how undergraduates evaluate realistic scientific data in the domains of geology and paleontology. The results are used to test several predictions of a theory of data evaluation, which we call models-of-data theory. Models-of-data theory assumes that when evaluating data, the individual constructs a particular kind of cognitive model that integrates many features of the data with a theoretical interpretation of the data. The individual evaluates the model by attempting to generate alternative causal explanations for the events in the model. We contrast models-of-data theory with other proposals for how data are cognitively represented and show that models-of-data theory gives a good account of the pattern of written evaluations of data produced by the undergraduates in the study. We discuss theoretical and instructional implications of the theory.

Page Thumbnails

  • Thumbnail: Page 
[323]
    [323]
  • Thumbnail: Page 
324
    324
  • Thumbnail: Page 
325
    325
  • Thumbnail: Page 
326
    326
  • Thumbnail: Page 
327
    327
  • Thumbnail: Page 
328
    328
  • Thumbnail: Page 
329
    329
  • Thumbnail: Page 
330
    330
  • Thumbnail: Page 
331
    331
  • Thumbnail: Page 
332
    332
  • Thumbnail: Page 
333
    333
  • Thumbnail: Page 
334
    334
  • Thumbnail: Page 
335
    335
  • Thumbnail: Page 
336
    336
  • Thumbnail: Page 
337
    337
  • Thumbnail: Page 
338
    338
  • Thumbnail: Page 
339
    339
  • Thumbnail: Page 
340
    340
  • Thumbnail: Page 
341
    341
  • Thumbnail: Page 
342
    342
  • Thumbnail: Page 
343
    343
  • Thumbnail: Page 
344
    344
  • Thumbnail: Page 
345
    345
  • Thumbnail: Page 
346
    346
  • Thumbnail: Page 
347
    347
  • Thumbnail: Page 
[348]
    [348]
  • Thumbnail: Page 
[349]
    [349]
  • Thumbnail: Page 
[350]
    [350]
  • Thumbnail: Page 
[351]
    [351]
  • Thumbnail: Page 
[352]
    [352]
  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355
  • Thumbnail: Page 
[356]
    [356]
  • Thumbnail: Page 
[357]
    [357]
  • Thumbnail: Page 
[358]
    [358]
  • Thumbnail: Page 
[359]
    [359]
  • Thumbnail: Page 
360
    360
  • Thumbnail: Page 
361
    361
  • Thumbnail: Page 
362
    362
  • Thumbnail: Page 
363
    363
  • Thumbnail: Page 
364
    364
  • Thumbnail: Page 
365
    365
  • Thumbnail: Page 
366
    366
  • Thumbnail: Page 
367
    367
  • Thumbnail: Page 
[368]
    [368]
  • Thumbnail: Page 
[369]
    [369]
  • Thumbnail: Page 
370
    370
  • Thumbnail: Page 
[371]
    [371]
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374
  • Thumbnail: Page 
375
    375
  • Thumbnail: Page 
376
    376
  • Thumbnail: Page 
377
    377
  • Thumbnail: Page 
378
    378
  • Thumbnail: Page 
379
    379
  • Thumbnail: Page 
380
    380
  • Thumbnail: Page 
381
    381
  • Thumbnail: Page 
382
    382
  • Thumbnail: Page 
383
    383
  • Thumbnail: Page 
384
    384
  • Thumbnail: Page 
385
    385
  • Thumbnail: Page 
386
    386
  • Thumbnail: Page 
387
    387
  • Thumbnail: Page 
388
    388
  • Thumbnail: Page 
389
    389
  • Thumbnail: Page 
390
    390
  • Thumbnail: Page 
391
    391
  • Thumbnail: Page 
392
    392
  • Thumbnail: Page 
393
    393