Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Pattern and Process in the Plant Community: Fifty Years after A.S. Watt

Eddy van der Maarel
Journal of Vegetation Science
Vol. 7, No. 1 (Feb., 1996), pp. 19-28
Published by: Wiley
Stable URL: http://www.jstor.org/stable/3236412
Page Count: 10
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Pattern and Process in the Plant Community: Fifty Years after A.S. Watt
Preview not available

Abstract

This paper is a tribute to A.S. Watt who published his 'Pattern and process in the plant community' almost 50 years ago. Watt's interpretation of the plant community "as a working mechanism, which maintains and regenerates itself" is still highly relevant, although the keywords have changed. 'Process' in Watt's view involves both upgrade and down-grade aspects, whereas 'Pattern' was not specified, neither quantified. Nowadays, process is mainly approached as 'disturbance', that is natural disturbance and 'pattern' as patch structure. Together they make up the 'patch dynamics' of the community. Some implications of patch dynamics for phytosociology are discussed. A 'Wattian' concept of the plant community combines the Gleasonian idea of individualistic behaviour of species with the Clementsian (or rather BraunBlanquetian) notion of community dynamics. Later work by Harper (demography), Grubb (regeneration niche) and earlier work of Sernander (forest gap dynamics) is significant for the understanding of the patch-dynamic nature of the community. Recent interest in plant species mobility can easily be linked to the concept of patch dynamics. Examples of mobility in a limestone grassland are given and a system of mobility types is proposed. Some perspectives for the study of patch dynamics are mentioned. Numerical pattern analysis should have a more prominent place in this type of study; the significance of the study of small permanent plots in a stand is emphasized, and unprejudiced demographic studies, as well as experimental studies of small-scale species replacement are recommended.

Page Thumbnails

  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25
  • Thumbnail: Page 
26
    26
  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28