If you need an accessible version of this item please contact JSTOR User Support

Matching Data Sets from Two Different Spatial Samples

Stéphane Dray, Nathalie Pettorelli and Daniel Chessel
Journal of Vegetation Science
Vol. 13, No. 6 (Dec., 2002), pp. 867-874
Published by: Wiley
Stable URL: http://www.jstor.org/stable/3236932
Page Count: 8
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Matching Data Sets from Two Different Spatial Samples
Preview not available

Abstract

Methods for coupling two data sets (species composition and environmental variables for example) are well known and often used in ecology. All these methods require that variables of the two data sets have been recorded at the same sample stations. But if the two data sets arise from different sample schemes, sample locations can be different. In this case, scientists usually transform one data set to conform with the other one that is chosen as a reference. This inevitably leads to some loss of information. We propose a new ordination method, named spatial-RLQ analysis, for coupling two data sets with different spatial sample techniques. Spatial-RLQ analysis is an extension of co-inertia analysis and is based on neighbourhood graph theory and classical RLQ analysis. This analysis finds linear combinations of variables of the two data sets which maximize the spatial cross-covariance. This provides a co-ordination of the two data sets according to their spatial relationships. A vegetation study concerning the forest of Chizé (western France) is presented to illustrate the method.

Page Thumbnails

  • Thumbnail: Page 
867
    867
  • Thumbnail: Page 
868
    868
  • Thumbnail: Page 
869
    869
  • Thumbnail: Page 
870
    870
  • Thumbnail: Page 
871
    871
  • Thumbnail: Page 
872
    872
  • Thumbnail: Page 
873
    873
  • Thumbnail: Page 
874
    874